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Foreword 

  

 

Earlier this year, the Global Asia Insurance Partnership (GAIP) adopted its 2025–

2029 strategy, marking a pivotal shift from being primarily a research-oriented 

organisation to one that drives impact by turning rigorous research into 

actionable solutions. Guided by its vision of building a risk-resilient and 

sustainable world, GAIP’s efforts are now organised around four strategic themes: 

1. An Integrated Approach to Protection Gaps 

2. Addressing Health & Retirement Gaps 

3. Climate Change & Insurance 

4. Navigating the Technological Landscape 

Under this strategy, GAIP aims to convene its tripartite partners—across industry, 

regulatory, and academic sectors—and broader stakeholders in the risk 

ecosystem to transform insight into implementation, evidence into policy, and 

pilots into scale. 

Nanyang Technological University (NTU), GAIP’s key academic partner, is central 

to this transition. The publication of this third Living Lab report marks a key 

milestone in our collaboration, reflecting our commitment to producing work 

that bridges scientific innovation and practical utility. 
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This report addresses the increasing unpredictability of natural hazards, such as 

inland flooding, in the context of climate change. Traditional flood risk models are 

under pressure due to the intensifying frequency and severity of events—

particularly in regions with limited historical data. In response, this report 

introduces the Geo-Hierarchical Deep Learning (GHDL) framework, developed 

and tested by Dr. Yanbin Xu, GAIP Research Fellow at NTU. 

Designed for data-scarce environments, the GHDL framework leverages deep 

learning techniques to provide an alternative approach to flood risk modelling. 

While the model is illustrated using Thailand’s Chao Phraya River Basin, its 

applicability extends across Asia and beyond. 

To support adoption and experimentation, GAIP will have a programming 

package available to its partners. We invite interested stakeholders to explore the 

model and collaborate with us in integrating it into your flood risk modelling 

capabilities.  

We would like to thank Dr. Xu for his dedication, and all NTU colleagues who 

supported this work. We are also grateful to GAIP partners for their continued 

engagement and insights, and to GAIP Director Dickson Wong and Associate 

Director Yao Lei for their support in bringing this work to fruition. 

As GAIP embarks on this new chapter, we look forward to working together with 

our partners to turn knowledge into action—and to deliver measurable impact for 

those most exposed to today’s and tomorrow’s risks. 

Sincerely,

 

Min Hung Cheng 

CEO, Global Asia Insurance 

Partnership 

 

Jun-koo Kang 

Director, Insurance Risk and Finance 

Centre (IRFRC) 
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Executive Summary 

In the face of escalating climate change, the uncertainty surrounding flood risks 

has become a critical concern for the insurance industry across Asia. Traditional 

flood models often struggle to account for the increasing frequency and severity 

of flood events driven by changing climate patterns and will require extensive 

data. This report explores the Geo-Hierarchical Deep Learning (GHDL) framework 

as an innovative solution to address some of these challenges. By leveraging 

deep learning techniques and addressing critical data limitations, the GHDL 

framework offers a robust and adaptable approach to inland flood risk modelling, 

providing stakeholders with the tools needed to enhance flood risk management 

and insurance pricing strategies.  Although the Chao Phraya River Basin is 

provided as a case study, this model can be used effectively in various inland 

flood situations relevant across Asia. 

This report presents the development and application of the Geo-Hierarchical 

Deep Learning (GHDL) framework for inland flood hazards modelling (Section 3). 

While demonstrated using the Chao Phraya River Basin as a case study (Section 

4), the GHDL framework is broadly applicable to inland flood risks across diverse 

regions (Section 2.4). By addressing critical gaps in data limitation and leveraging 

a deep learning approach (Section 2.1), this work provides a scalable and 

transferable solution for stakeholders aiming to enhance flood risk management 

and insurance pricing strategies (Section 2.2-2.3). 

The GHDL framework offers a valuable alternative to existing commercial models. 

While commercial models like the RMS and Oasis LMF provide high-resolution 

flood mapping and modular frameworks, they often require extensive data inputs 

and are resource-intensive. In comparison, the GHDL model integrates upstream 

and downstream flood dependencies within a geo-hierarchical structure, 

allowing for effective flood hazard predictions in data-limited settings (Section 7). 

Both this report and its foundational reference paper (Xu et al, 2022) have 

validated the strong predictive performance of the GHDL model, outperforming 

simpler yet equally complex benchmarks in capturing spatial and temporal flood 

hazard dynamics.  
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In this report, we incorporate the GHDL model with future climate projections 

through Shared Socioeconomic Pathways (SSPs), enabling scenario-based risk 

assessments that are crucial for long-term planning in the insurance sector 

(Section 6). 

To bridge the gap between research and industry application, a programming 

package designed to replicate the modelling process described herein will be 

provided to our GAIP partners. They can leverage this tool for in-house testing 

using their proprietary policy and claim datasets, offering a cost-effective way to 

explore flood risk modelling tailored to specific portfolios (Section 5). This 

adaptability empowers insurers to conduct rigorous testing, refine underwriting 

strategies, and explore innovative insurance products, such as parametric 

insurance, which the GHDL framework readily supports. 

In summary, the GHDL framework represents an advancement in flood risk 

modelling by addressing critical challenges in standardisation and data 

constraints. We hope it can serve as a practical and accessible tool for the 

insurance industry, offering a roadmap for enhancing flood risk assessment and 

advancing climate adaptation efforts. This report invites them to explore the 

utility of the GHDL model and its supporting tools, with opportunities for further 

development and customisation to meet their unique needs. 
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1 Introduction 

In recent years, the increasing frequency and severity of flood events due to 

climate change have underscored the need for more robust and adaptable flood 

risk modelling frameworks. Traditional models sometimes could fall short in 

predicting these evolving risks, necessitating innovative approaches that can 

better account for the complexities of flood dynamics in a changing climate. This 

report introduces the Geo-Hierarchical Deep Learning (GHDL) framework as a 

promising solution to these challenges, offering enhanced predictive capabilities 

and adaptability across diverse regions. Importantly, the GHDL framework is 

designed to complement existing models, particularly in areas with inland flood 

risk where the data required for traditional models is limited. 

The importance of developing alternative flood risk models lies in the growing 

uncertainty and variability of flood events driven by climate change. As traditional 

models struggle to keep pace with these changes, there is a critical need for new 

methodologies that can provide more accurate and reliable predictions. The 

GHDL framework addresses this need by leveraging advanced deep learning 

techniques and addressing critical data limitations, offering a scalable and 

transferable solution for enhancing flood risk management and optimising 

insurance pricing strategies. 

Our exploration of the GHDL framework began with its application to the 

Mississippi River Basin, where it demonstrated strong predictive performance 

and adaptability to various flood scenarios. The success of this initial application 

highlighted the potential of the GHDL model to be applied to other regions with 

similar challenges. This report now shifts focus to Asia, using the Chao Phraya 

River Basin in central Thailand as a case study to further validate the model's 

effectiveness. 

The Chao Phraya River Basin, located in central Thailand, is one of the most 

critical regions for the nation’s socio-economic and environmental well-being. 

Spanning an area of approximately 160,000 square kilometres, the basin supports 

over 13 million residents who rely on its waters for agriculture, industry, and 

domestic use (Budhathoki et al., 2024; Visessri and Ekkawatpanit, 2020). The basin 

encompasses key urban and rural areas, including the bustling capital city of 
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Bangkok, which alone is home to over 11 million people1. The region is a hub of 

economic activity, contributing significantly to Thailand’s GDP through 

agriculture, manufacturing, and services. Its fertile plains are vital for rice 

cultivation, making Thailand one of the world’s top rice exporters, while the 

densely populated urban centres drive industrial and commercial growth. 

Historically, the Chao Phraya River Basin has experienced significant flood events, 

which have had profound impacts on lives and livelihoods. The devastating floods 

of 2011, for instance, inundated large parts of Bangkok and its surrounding 

provinces [area affected 97,000 square kilometres (Gale and Saunders, 2013)], 

resulting in economic losses exceeding $46 billion at the time (equivalent to $55 

billion today) and insured losses surpassing $15 billion at the time (equivalent to 

$18 billion today), while displacing millions of people (Bevere and Dhore, 2021). 

These floods highlighted the region’s vulnerability to extreme weather events 

exacerbated by climate change and urbanisation. Other notable flood events 

occurred in 1995 and 2002 (area affected 444,000 and 372,000 square kilometres, 

respectively), each bringing widespread disruption and underscoring the critical 

need for effective flood management strategies. As a lifeline for Thailand, the 

Chao Phraya River Basin remains a focal point for research and investment in 

sustainable water resource management and disaster resilience. 

 
1 Office of the National Economic and Social Development Council (retrieved on December 1, 2024): 
https://www.nesdc.go.th/nesdb_en/more_news.php?cid=156&filename=index 

https://www.nesdc.go.th/nesdb_en/more_news.php?cid=156&filename=index
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Figure 1: Location map of the study area: (a) Thailand, (b) Chao Phraya River Basin (CPRB), and (c) 

Lower Chao Phraya River Basin (LCPRB).  

Source: Figure 1 of Budhathoki et al. (2024). 

Well-devised risk management, including insurance, is essential for climate 

adaptation, protecting individuals, businesses, and communities from the 

financial impacts of flooding. Despite its importance, the flood insurance market 

suffers from low coverage. Rising flood losses already compel insurance 

companies to increase their capital base, potentially leading to prolonged periods 

of unprofitability. Uninsured risks remain a significant concern, as inadequate 

financial resources for relief and recovery adversely affect society, the economy, 

and the well-being of people (Jongman et al., 2014). The insurance gap has grown 

significantly, from $117 billion in 2020 to $161 billion in 2021. While nearly 29% of 

the global population is exposed to flood risks, only 7% of flood losses in emerging 

markets and 31% in developed economies were insured over the two decades 

(Swiss Re, 2022). This gap highlights the need for enhanced awareness and 

accessibility of flood insurance. What makes things worse is that while risk 

management generally reduces the impacts of floods, it struggles with 

unprecedented events, which are becoming more frequent owing to climate 

change (Kreibich et al., 2022). 
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Accurate models serve as an essential foundation for policymakers to design 

resilient infrastructures and implement proactive mitigation strategies for flood 

risks. Accurate flood risk prediction enhances the resilience of communities and 

economies, reducing the overall socioeconomic impact of flooding events 

(Surminski et al., 2015). For the insurance industry, precise flood risk assessments 

underpin the development of appropriate insurance products, inform pricing 

strategies, and ensure the financial stability of insurance providers (Kousky and 

Kunreuther, 2018). Moreover, a robust framework for flood risk modelling that is 

both calibratable and transferable across different markets is also critical for flood 

insurance development. 

Despite their critical importance, the development of accurate flood risk models 

faces numerous challenges. Traditional statistical models often struggle to 

capture the complex interactions between hydrological and meteorological 

factors that drive flood events. Additionally, the limited spatial and temporal 

resolution of available data contributes to significant prediction inaccuracies 

(Bouwer, 2013). The dynamic and evolving nature of climate change further 

exacerbates these challenges, introducing additional variability that complicates 

reliable flood risk predictions. 

Physical models, which aim to simulate flood mechanisms, are resource-

intensive, costly, and laborious to develop. They also require frequent updates and 

recalibration, making them less adaptable to rapidly changing conditions. These 

shortcomings in flood risk modelling not only undermine program effectiveness 

but also hinder public awareness, reducing the perceived value of insurance and 

the willingness to pay for coverage (Thistlethwaite et al., 2020). 

In the context of developing regions, these challenges are compounded by 

resource and data limitations, creating additional barriers to achieving accurate 

flood risk assessments. Such constraints underscore the need for innovative and 

efficient modelling approaches that can address these gaps while maintaining 

robustness and reliability. 

In this report, we employed the Geo-Hierarchical Deep Learning (GHDL) 

framework (Xu et al., 2022), a model specifically developed to address data and 

resource limitations commonly faced in developing regions. This framework 

combines the robustness of statistical risk modelling with a structure that 
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preserves key physical characteristics, making it particularly suited for flood risk 

prediction and flood insurance pricing. The GHDL framework leverages high-

resolution meteorological and hydraulic data within a uniquely coded 

geographical hierarchy. By integrating the geographical connectivity of regions 

directly into the deep learning structure, the model enhances its applicability and 

transferability across diverse physical and anthropogenic contexts. This approach 

not only improves prediction accuracy but also ensures the model remains 

adaptable to varying conditions (see Section 2). 

With the flood hazard associations established, we utilise climate simulations for 

four widely discussed socio-economic pathways to project future climate change 

impacts. 
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2 Current Challenges of Flood Risk Modelling and 

the Generality of GHDL Model 

2.1 Challenges of Flood Risk Modelling 

The industry’s capacity to model flood risks remains limited (Swiss Re, 2022). 

While probabilistic models exist, they are still at a relatively early stage of 

development. As summarised by Nkwunonwo et al. (2020), the advancement of 

flood risk modelling in developing countries faces significant challenges due to 

its nature as a secondary catastrophe—characterised by higher frequency and 

lower per-event damage compared to primary catastrophes like tropical cyclones 

and earthquakes. Referring to Nkwunonwo et al. (2020), we list two key non-

technical gaps that pose particular challenges: 

1. Data Availability and Quality 

Developed countries such as the Netherlands, the UK, and the US typically have 

access to high-resolution hydrologic, hydraulic, and topographic data necessary 

for accurate flood modelling. In contrast, developing countries often face severe 

data shortages, driven by financial constraints or political factors. 

Low-resolution global datasets are frequently used in developing countries but 

lack the precision needed for accurate flood inundation modelling, particularly in 

urbanised areas. 

2. Cost Barriers for Moderate Exposure Regions 

Advances in geospatial and remote sensing technologies offer promising 

solutions to data challenges. However, the cost of data acquisition, processing 

expertise, and required software remains prohibitive for many developing 

countries. 

Building precise flood models for regions with moderate exposure may not be 

cost-effective. However, these regions often cover large areas and collectively 

account for a significant portion of insurers’ exposure. For instance, the 2011 

Thailand floods impacted 69 out of 79 provinces (Poapongsakorn and Meethom, 

2013). While it might not be feasible to develop costly physical models for the 

non-Bangkok regions, these areas still contribute substantially to overall losses. 
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Beyond these two non-technical challenges, flood risk modelling for developing 

countries also faces additional barriers, such as  

3. Challenges in Flood Frequency Analysis2 and 4. Localisation of Global Flood 

Models.3 

This report demonstrates how the GHDL model can partially address these 

challenges using the Chao Phraya River Basin as a case study. The structure of 

the GHDL model (described in Section 3.3) is designed to be generalisable, 

enabling the simultaneous modelling of inland flood risk dependencies across 

multiple regions. 

In the remainder of this section, we discuss how the GHDL model addresses the 

challenges of flood risk modelling in developing countries, its data requirements 

and assumptions, and how its data-driven approach makes it applicable to other 

regions. 

 

2.2 Advantage of GHDL in Developing Country Flood Risk Modelling 

2.2.1 Strong in Addressing Data Scarcity  

The GHDL flood hazard model demonstrates strong capabilities in addressing the 

data constraints commonly faced by developing countries for two key reasons: 

1. Utilisation of Satellite Data 

GHDL can directly incorporate raw satellite data, which offers a significant 

advantage in regions where conventional flood hazard data is sparse. Compared 

to traditional data sources, high-resolution satellite data is more readily available 

thanks to advancements in satellite technology. 

Conventional event-based flood models heavily rely on accurately recorded 

historical flood events, making their effectiveness dependent on the availability 

and reliability of long-term observational data. This poses a significant challenge 

 
2 Reliable flood frequency analysis is often lacking in developing countries, limiting the ability to accurately 
estimate flood risks and inundation probabilities. 

3 Global flood models often struggle to account for localised conditions and data constraints in developing 
countries, reducing their accuracy and applicability. 
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in many regions of Asia, where historical flood records are inconsistent and 

incomplete due to variations in data collection practices. By contrast, the use of 

satellite-derived data offers a more comprehensive and consistent approach to 

flood modelling.  

2. High Time-series Resolution 

Conventional probabilistic models typically focus on modelling the intensity and 

probability of flood events. However, these methods are constrained by the low 

frequency of flood events, with only a few occurring each year. In the situation 

that only several years of data are available, this event-based modelling is not 

sufficient to power a model with strong prediction power. In contrast, GHDL 

models flood hazards as a daily time series (see Section 4), with the capability to 

model intraday variations. By combining this approach with high-resolution 

satellite data, the issue of data scarcity is partially mitigated. 

Floods, as a typical secondary catastrophe risk, occur with relatively higher 

frequency than primary catastrophe risks. As a result, just a few years of high 

time-granularity data can significantly enhance the capacity to model flood 

hazards. However, the absence of rare, high-impact events—such as the 2011 

Thailand floods—from the data sample can pose challenges for accurate out-of-

sample predictions. Despite this, the GHDL model’s ability to learn associations 

between high-resolution meteorological variables (e.g., precipitation) and flood 

hazards provides a degree of robustness in addressing these challenges.  Unlike 

conventional flood models that may struggle with limited historical observations 

of extreme events, the GHDL model leverages its ability to learn associations 

between high-resolution meteorological variables (e.g., precipitation patterns) 

and flood hazards. This enables it to extrapolate risk beyond observed events, 

capturing the likelihood and severity of rare but high-impact floods. By 

emphasising tail risk modelling, the GHDL framework enhances predictive 

robustness, offering insurers and policymakers a more reliable tool for assessing 

extreme flood scenarios even in data-limited regions. 

2.2.2 Cost-efficient and Physical Information Embedding  

While capturing some physical information, GHDL is generally more cost efficient 

than a conventional physical model. Unlike traditional physical models, which 
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require intensive resources to build and have limited transferability across 

regions, the GHDL model integrates multiple major and moderate exposure 

regions (Section 3.3) to leverage deep learning techniques. By capturing the 

relationships between flood hazards and climate variables, GHDL establishes 

dependencies across regions effectively. 

The GHDL model demonstrates strong transferability across regions, as it relies 

on limited region-specific information (Section 3.3). This transferability has been 

validated through its successful performance in flood hazard prediction for the 

Mississippi River (Xu et al., 2022) and the Chao Phraya River, as presented in this 

report. 

While the GHDL model requires maintenance to account for changes in flood 

mechanisms due to infrastructure developments or climate change, this process 

is straightforward. Maintenance involves feeding newly observed data into the 

model, without requiring significant computational resources, ensuring its 

continued accuracy and performance. 

We summarise the challenges of flood risk pricing and how GHDL addresses 

these challenges in the following table: 
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Table 1: Challenges of flood risk modelling and adaptations made by GHDL 

 

Challenge 
Impact on Traditional Flood 
Models 

How the GHDL Model 
Addresses This Challenge 

A. Limited Event 
Data for Hazard 
Modelling 

  

A.1 Dependence 
on Historical 
Flood Records 

Traditional models rely on well-
documented past flood events, 
making them ineffective in data-
scarce regions. 

GHDL models flood hazards 
using daily satellite-derived 
meteorological data and 
percentile-based flood risk 
estimation, enabling robust risk 
assessment even in regions with 
limited historical records. 

A.2 Absence of 
Rare, High-
Impact Events 

Lack of extreme flood events in 
the data can lead to inaccurate 
out-of-sample predictions. 

GHDL focuses on modelling the 
tail of the flood risk distribution, 
improving estimates of low-
probability, high-severity events. 

A.3 Limited 
Applicability in 
Regions with 
Evolving Climate 
Patterns 

Climate change affects flood 
frequency and intensity, but 
event-based models struggle to 
adapt due to their reliance on 
past events. 

GHDL dynamically learns from 
meteorological variables, 
making it more adaptable to 
changing climate conditions 
and future flood risks. 

B. Cost Barriers 
for Moderate 
Exposure 
Regions 

Traditional flood models using 
physical methods can be costly. 
As a result, only high-risk regions 
tend to be modelled, while 
moderate exposure regions are 
often neglected. 

GHDL incorporates geo-
connectivity between moderate 
and high-exposure regions, 
allowing for flood risk 
dependencies to be modelled 
while also improving the 
interpretability of hazard 
assessments. 

C. Localisation 
of Global Flood 
Models 

Conventional models may 
struggle with localised flood 
dynamics due to insufficient 
resolution in historical data. 

GHDL leverages high-resolution 
meteorological inputs, capturing 
fine-scale flood patterns more 
effectively. 

D Limited Loss 
Data for 
Damage 
Modelling 

Lack of reliable damage data 
makes it difficult to validate and 
refine flood impact assessments. 

GHDL does not directly address 
damage modelling limitations. 
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2.3 GHDL’s Data Requirements and Assumptions 

Empirical analyses have demonstrated that the GHDL model outperforms 

models of similar complexity (Section 4.4) when the following assumptions are 

satisfied: 

Assumptions for Optimal Performance: 

1. Inland Flood Risk Modelling: 

The GHDL model has been tested and validated in the context of inland 

flood risk modelling. Both this report and the foundational paper (Xu et al., 

2020) focus on the relationship between climate variables and inland flood 

hazards. Its applicability to coastal floods has not yet been evaluated. 

2. Multiple Regions with Interdependent Flood Hazards: 

A key factor in GHDL’s superior performance is its ability to detect and 

model dependencies among regions. This feature is most effective when 

several regions with interdependent flood hazards are analysed together. 

Data Requirements: 

As outline in the previous section, one of the key advantages of the GHDL 

framework is its ability to operate effectively where conventional flood hazard 

data is sparse. Instead of relying on traditional data sources, the GHDL model 

utilises high-resolution satellite data, making it particularly suitable for regions 

where detailed data may be scarce or unavailable. Below, we outline the specific 

data requirements for implementing the GHDL model: 

1. Flood Hazard Measure: 

A fairly accurate measure of flood hazard is required (see Section 4.1 for an 

in-depth discussion). 

2. Climate Variables: 

Climate data with predictive power for flood risks, such as precipitation, 

temperature, and air pressure, are essential for the model. 

3. Insurance Exposure and Loss Data (Optional): 

If the objective includes building a loss model, insurance exposure and loss 

data are also required. 
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We use the context of this report to further illustrate the data requirement and 

assumptions of GHDL. As a country with high flood risk, Thailand has a long 

history of gauging hydrological variables at various stations. These variables can 

serve as measures of flood hazard; however, we find it challenging to map the 

data acquired from public sources into a generally complete time series. For the 

Chao Phraya River Basin, we identified two credible public sources of flood hazard 

data: 

• Global Runoff Data Centre (GRDC):4 GRDC is an international data 

repository that provides reliable hydrological data for researchers and 

policymakers. It hosts a global network of gauging station data, including 

daily water discharge records for the Chao Phraya River Basin from 1960 to 

2000. However, the GRDC dataset lacks recent updates, limiting its 

applicability to contemporary challenges. 

• National Hydroinformatics Data Center (NHDC):5 NHDC is Thailand’s 

official data centre for hydrological and water management information. It 

provides daily water level data from January 2019 to April 2020 and hourly 

water flow data from April 2020 onward. This dataset is well-maintained 

and offers real-time insights into water dynamics within Thailand’s river 

basins. 

For this report, we selected the NHDC dataset, utilising daily water level data from 

January 1, 2019, to October 31, 2024, as our measure of flood hazard. Compared to 

the GRDC dataset, NHDC provides up-to-date data, making it more relevant to 

the challenges currently faced by insurers. While neither dataset covers the 

catastrophic 2011 Thailand flood, the NHDC dataset includes two relatively 

significant flood events in 2021 and 2022. 

Another challenge in preparing this report is the lack of granular insurance loss or 

economic loss data. In the primary reference for this study, Xu et al. (2022) tested 

their proposed Geo-Hierarchical Deep Learning (GHDL) method using policy-level 

claims and exposure data from the National Flood Insurance Program in the 

 
4 Global Runoff Data Centre (GRDC), Date of access December 1, 2024: 
https://portal.grdc.bafg.de/applications/public.html?publicuser=PublicUser 

5 National Hydroinformatics Data Center (NHDC), Date of access December 1, 2024: https://www.thaiwater.net/ 

https://portal.grdc.bafg.de/applications/public.html?publicuser=PublicUser
https://www.thaiwater.net/
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United States. Unfortunately, such granular claims and exposure data are 

unavailable in Thailand publicly. Detailed claims and exposure data at the 

required locations were unavailable, and publicly accessible flood loss data at a 

sufficiently granular level could not be identified. However, this limitation does 

not apply to insurers who can use their own loss data to estimate loss information 

using this model. By leveraging their proprietary data, insurers can effectively 

apply the GHDL framework to enhance flood risk assessment and develop more 

accurate pricing and underwriting strategies. 

 

2.4 Flood Hazard Measures for Other River Basins in APAC 

As demonstrated by Xu et al. (2022) and further elaborated in this report (Section 

4), the GHDL model is highly flexible and unselective regarding the types of data 

it can utilise. For reference, we provide several sources of flood hazard data for 

other major river basins: 

1. Mississippi River Basin (U.S.), United States Geological Survey Water Data 

for the Nation: https://waterdata.usgs.gov/nwis/sw 

2. China Yangtze River (China), 长江水文网: 

http://www.cjh.com.cn/swyb_sssq.html 

3. Mekong River (Vietnam, Laos, Cambodia, Thailand), Mekong River 

Commission: https://www.mrcmekong.org/data-and-information-systems-

and-services/ 

4. Ganges Basin (India, Bongladash), Hydrological Dataset for Ganges Basin 

(Sufian, 2024).  

  

https://waterdata.usgs.gov/nwis/sw
http://www.cjh.com.cn/swyb_sssq.html
https://www.mrcmekong.org/data-and-information-systems-and-services/
https://www.mrcmekong.org/data-and-information-systems-and-services/
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3 Deep Learning Approaches to Flood Hazard 

Modelling 

3.1 Objective 

Flood hazard modelling is essential for accurate flood insurance pricing. The 

primary objective of such modelling is to provide the best possible estimation of 

flood hazards for future periods based on all available information up to the 

present. We formulate this problem as follows. 

Let 𝑄𝑖𝑡 represent the flood hazard at location 𝑖 = 1,… , 𝐼 at time 𝑡 = 1, … , 𝑇. The goal 

is to forecast 𝑄𝑖𝑡 with precision, leveraging information from previous time 

periods up to 𝑡 − 1. Specifically, the forecast is expressed as: 

�̂�𝑖𝑡 = 𝔼[𝑄𝑖𝑡 ∣ 𝐐𝑡−1,𝐖𝑡−1] = 𝑓(𝐐𝑡−1,𝐖𝑡−1), 

 where 𝐐𝑡−1 = {𝑄𝑖𝑡: 𝑖 = 1,… , 𝐼, 𝑡 = 𝑡 − 1, … , 𝑡 − 𝑙} and 𝐖𝑡−1 = {𝑊𝑖𝑡: 𝑖 = 1,… , 𝐼, 𝑡 = 𝑡 −

1, … , 𝑡 − 𝑙} represent the flood hazard and weather information sets for all valid 

locations from 𝑡 − 𝑙 to 𝑡 − 1, respectively. 

The function 𝑓(⋅) denotes the mean estimation produced by the constructed 

deep learning model, which is designed to capture the underlying relationships 

between the historical flood hazard and weather information to predict future 

flood hazards effectively. 

 

3.2 Commonly Deep Learning Frameworks for Flood Hazard 

Factorisation 

3.2.1 Convolutional Neural Networks 

Convolutional neural networks (CNNs) are a specialised class of deep learning 

models widely utilised in image recognition and computer vision tasks. These 

models are particularly suitable for processing image-based precipitation data. 

Unlike aggregated precipitation data, which may obscure localised variations, 

image-based precipitation data provides high spatial resolution, capturing 

detailed patterns across geographical areas. Such granularity is crucial as local 

landscape variations can cause heavy rainfall at specific locations to result in 
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disproportionately higher flood hazards. These localised patterns, often lost in 

aggregated datasets, can be effectively captured and analysed using image-

based precipitation data. 

The architecture and capabilities of CNNs have been profoundly shaped by 

several key advancements in the field. The seminal work by LeCun et al. (1998), 

introducing the LeNet-5 model, laid the foundation for the application of CNNs in 

document recognition. Building on this groundwork, Krizhevsky et al. (2012) 

introduced AlexNet, a deeper CNN architecture that achieved a breakthrough in 

image classification on the ImageNet dataset, underscoring the potential of deep 

learning in computer vision. Subsequent refinements in CNN design have further 

enhanced their performance, as demonstrated by models such as VGGNet 

(Simonyan and Zisserman, 2014), GoogLeNet (Szegedy et al., 2015), U-Net 

(Ronneberger et al., 2015), ResNet (He et al., 2016), and YOLO (Redmon et al., 2016), 

among others. 

CNNs offer several notable advantages: 

• Local connections: Instead of connecting each neuron to all neurons in 

the previous layer, CNNs establish connections with only a subset of 

neurons, reducing the number of parameters and expediting convergence. 

• Weight sharing: Groups of connections share the same weights, further 

decreasing the number of parameters and enhancing computational 

efficiency. 

• Down-sampling: Pooling layers leverage local correlation principles to 

down-sample feature maps, reducing data size while preserving salient 

information (Li et al., 2022). 

A typical CNN system comprises four main components. The convolution process 

is fundamental for feature extraction, producing feature maps as output. To 

address potential information loss at the edges during convolution with a specific 

kernel size, padding is applied by adding zero values around the input, effectively 

adjusting its dimensions. The stride parameter determines the density of 

convolution operations, with larger strides resulting in less dense feature 

coverage. Following convolution, the feature maps may contain redundant 

information, increasing the risk of overfitting. To mitigate this, pooling layers 
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condense the feature maps, reducing redundancy and preserving essential 

features. The complete workflow of a 2-dimensional CNN system is illustrated in 

Figure 2. 

 

 

Figure 2:  Illustration of padding, stride, convolution, and pooling procedure  

This figure demonstrates the procedure of a 2-dimensional CNN system. Here, we take the padding 

= 1, stride = 2, convolutional kernel size = 3, and max pooling = 2. In the last step, the convolution 

output is vectorised and ready to be utilised in the following layers. 

 

3.2.2 Wavelet Neural Networks 

Wavelet Neural Networks (WNNs) present significant advantages for flood hazard 

management, making them a valuable tool within our proposed GHDL 

framework. This section elaborates on the benefits of WNNs and outlines the 

rationale for their application in analysing the fluvial component of flood hazards. 

The foundational concept of the WNN approach, the discrete wavelet transform 

(DWT), is introduced in Section 9.1. 

WNNs combine the strengths of DWT and neural networks (NNs) by feeding 

wavelet-decomposed coefficients into a fully connected neural network 

architecture. Recognized as a state-of-the-art methodology in flood risk 

management (Mosavi et al., 2018), WNNs have demonstrated superior model 

accuracy compared to traditional Fourier transform approaches (Shafaei and Kisi, 

2016). These capabilities make WNNs particularly well-suited for capturing 

complex, non-linear patterns in fluvial flood dynamics. 

3.3 Geo-Hierarchical Deep Learning Framework 

Leveraging its strengths in handling geo-connected dependencies and hazard 

correlations in extreme events, this study employs the Geo-Hierarchical Deep 

Learning (GHDL) framework, specifically designed for flood insurance pricing, to 
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forecast flood hazards (Xu et al., 2022). This framework integrates hydraulic and 

meteorological data, hierarchically organised by geographical locations, to 

enhance predictive accuracy. 

Inland flood hazards within a specified region are generally categorised into two 

types: fluvial and pluvial floods. Fluvial floods are predominantly driven by 

upstream flood hazard dynamics, whereas pluvial floods are caused by intense 

localised rainfall. The concurrent occurrence of both types can significantly 

exacerbate their combined impacts (Chen et al., 2010). 

The GHDL framework employs a dual-system methodology to capture the 

relationships between inland flood hazards and the climatic conditions 

contributing to both fluvial and pluvial floods simultaneously. Figure 3 illustrates 

the information integration process in the proposed GHDL model. Precipitation 

data relevant to pluvial flood analysis are processed through a CNN framework, 

while flood hazard data critical for fluvial flood analysis are processed using a 

WNN system. This bifurcated approach allows for a detailed understanding of the 

distinct mechanisms driving each type of flood. The locally processed data are 

then merged with integrated data from upstream cities, creating a 

comprehensive dataset for local flood hazard forecasting. This integrated dataset 

is subsequently forwarded to downstream cities for further analysis. 

 

 

Figure 3: Information integration process of GHDL structure  

Source: Figure 2 of Xu et al. (2022). This figure illustrates the information integration process of 

GHDL structure. For a given city 𝑘, the meteorological data (e.g., precipitation) are processed by a 

CNN system, while the hydraulic data (river flow) are processed by a WNN system. The processed 

meteorological and hydraulic data are then combined with the integrated information obtained 
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from the upstream cities. The resulting data are fed into a NN system to generate the integrated 

output for City 𝑘. 

The geographical hierarchy of cities (or locations) within a river basin is 

determined by their connectivity along the river channel. For locations 𝑖 and 𝑗 

situated along the same river, where 𝑖 is upstream of 𝑗, it is reasonable to assume 

that the flood hazard at location 𝑖 may causally impact the flood hazard at 

location 𝑗, but the reverse influence is less significant or negligible. Under the 

GHDL framework, the flood hazard forecasted at city 𝑖 is propagated downstream 

to location 𝑗 to support flood hazard predictions for 𝑗. Concurrently, the observed 

ground truth at location 𝑗 is utilised in a feedback mechanism, in the process of 

deep learning model fitting, to refine the training of the flood prediction 

submodel for city 𝑖. 

This framework offers three key advantages: 

• Enhanced interpretability: By incorporating connectivity into the model, it 

becomes easier to understand how upstream information influences flood 

hazard predictions downstream. 

• Streamlined optimisation: Encoding geographical connectivity narrows 

the search space for optimisation algorithms, resulting in faster 

convergence and increased model efficiency. 

• Reduced risk of overfitting: The integration of connectivity acts as a 

constraint, simplifying the model by reducing the number of parameters, 

thereby mitigating the risk of overfitting in complex models. 
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4 Application of the framework on the Chao 

Phraya Basin 

This section provides a detailed technical overview of the flood hazard estimation 

process for the Chao Phraya Basin. It also outlines the procedure for setting up 

the GHDL model for a specific region. 

Procedure of setting up GHDL 

1 Select the flood hazard metric (Section 4.1).  

2 Collect the data: flood hazard, climate variables, insurance data (Section 4.2). 

3 Code the GHDL model with physical connectivity (Section 4.3) 

4 Training and select best model for the area of focus (Section 4.3) 

5 Estimate the flood hazard for future (Section 4.4) 

6 incorporate the flood hazard into the pricing model 

In this report, we examined the flood hazard across 11 cities situated within the 

Chao Phraya River Basin, grouped into five clusters as illustrated in Figure 4. 

These clusters encompass the majority of the population and economic 

exposures within the region, ensuring comprehensive coverage of the basin’s 

critical areas. 

 

4.1 Inland Flood Hazard Metrics 

Inland flood hazards can be monitored using various measures derived from 

hydrological and meteorological methods. Here, we present two widely discussed 

flood hazard measures as examples: water level and water discharge (Quinn et al., 

2019): 

• Water level (𝑚): This metric represents the height of water in a river, 

serving as a direct indicator of flood risk. When the water level at a specific 

location exceeds a certain threshold, a flood hazard can be identified. For 

instance, in Thailand, the National Hydroinformatics Data Center (NHDC) 
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categorises a location as having a “high” water level if it surpasses the 70th 

percentile of historical observations at the station. Additionally, the NHDC 

assigns an “overflow” category when the water level exceeds the riverbank 

height. 

• Water discharge (𝑚3/𝑠): Also known as water flow, this metric measures 

the volume of water flowing through a specific location over a given 

period. It is a valid flood risk indicator because of the generally non-

decreasing relationship between water level and discharge at any given 

location. Water discharge is commonly used as a flood hazard measure in 

countries like the United States (Quinn et al., 2019), where gauging stations 

often have longer historical records for water flow than for water levels. 

Insurers may be more familiar with measures that quantify the intensity of 

specific flood events, such as: 

• Peak discharge (𝑚3/𝑠): The maximum water discharge recorded during a 

flood event. 

• Mean annual flood (𝑚3/𝑠): The average peak flood discharge over a series 

of years. 

These two metrics are essentially derived from water discharge and provide 

valuable insights into flood risk. They are also easier to use for insurance pricing 

and claims settlement. However, their application in deep learning models is 

limited due to the scarcity of observations, which makes it challenging to 

establish relationships between flood hazards and climate variables. In contrast, 

water level and water discharge data are often available at finer temporal 

resolutions, such as daily, hourly, or even minute-level observations. 

Given the constraints of data availability, this report uses water level as the 

primary flood hazard measure for the Chao Phraya River Basin. 
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4.2 Data 

4.2.1 Flood Hazard Data 

As previously established, we obtained daily water level data from January 1, 2019, 

to October 31, 2024, from the NHDC. The NHDC provides historical water level 

data in the format of images, as demonstrated in Figure 4. The water levels at 

each gauging station are categorised by NHDC into five levels: 

• Overflow: Water level above the riverbank (red). 

• High: Water level above the 70% quantile (blue). 

• Normal: Water level between the 30% and 70% percentiles (green). 

• Low: Water level between the 10% and 30% percentiles (yellow). 

• Critically Low: Water level below the 10% percentile (pink). 
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Figure 4: Thailand Water Flow Data as of 2024 from the National Hydroinformatics Data Center 

(NHDC).  

Flood risk was determined using image processing techniques. For a particular 

cluster and date, pixel colours from the images were rounded, and the number of 

pixels of each colour was counted within predefined rectangles. To focus on 

relevant information, we excluded colour counts such as water bodies, land, and 

other complementary information. Additionally, the “Critically Low” category was 

excluded since gauging stations typically report this level when they are out of 

function. This left four relevant categories: Overflow (red), High (blue), Normal 

(green), and Low (yellow). We calculated the ratio of each category for each date 

and cluster. 

 

Figure 5: Image processing of water level data.  

Figure 5 illustrates the distribution of category ratios across the sample period. 

The flood hazard distribution varies significantly across regions: 

• Bangkok, Nonthaburi, Pathum Thani: 

a. This region exhibits a significant proportion of Overflow hazard 

events, indicating heightened flood risk likely due to low elevation, 

urban density, and proximity to the river mouth. 

b. While extreme hazards are frequent, the Normal hazard category 

dominates overall coverage. 
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• Ang Thong, Sing Buri, Ayutthaya: 

a. The region shows a balanced mix of Normal, Low, and High hazard 

categories. Overflow events are less frequent compared to Bangkok. 

b. This distribution reflects the interplay of upstream river dynamics 

and localised rainfall. 

• Uthai Thani, Chai Nat, Nakhon Sawan: 

a. Higher frequencies of Normal and Low hazard events are observed, 

with minimal Overflow occurrences. 

b. This distribution reflects the upstream region’s role as a source of 

river flow and reduced localised flood impacts. 

• Kamphaeng Phet: 

a. The region experiences localised Overflow hotspots, potentially due 

to specific terrain features or hydrological conditions. 

b. High and Normal hazard categories dominate, indicating diverse 

flood conditions. 

• Phitsanulok: 

a. Flood hazards are dominated by Normal and Low categories, with 

limited Overflow events. This is likely due to the region’s upstream 

location and higher elevation. 
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Figure 6:  Flood hazard distribution by category for each location. For each day, the percentages of 

Normal, Low, High, and Overflow categories sum to 100%. Each subplot presents a histogram of the 

daily distribution of these four categories. 

To facilitate analysis, we aggregated the flood hazard ratios into a single variable 

representing the flood hazard at each location and time, using the following 

equation: 

𝑄𝑖𝑡 = 5 ⋅ 𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑖𝑡 + 2 ⋅ 𝐻𝑖𝑔ℎ𝑖𝑡 + 0 ⋅ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑡 + 0 ⋅ 𝐿𝑜𝑤𝑖𝑡 . 

For the 23 missing dates in the sample, we imputed values using the historical 

mean of the corresponding day of the year. Figure 7 shows the histogram of the 

aggregated flood hazard for each location, and Figure 8 illustrates the time series 

of aggregated flood hazard values across the sample period. For clarity, the time 

series was smoothed using a moving average from 𝑡 − 1 to 𝑡 + 1. Missing dates 

and significant flood events in 2021 and 2022 are also highlighted. 

The aggregated flood hazard measure aligns well with the categorical flood 

hazard data. Based on the weight selected, an aggregated flood hazard value 

exceeding 2 indicates a high flood hazard at a given location and time. Hereafter, 

we refer to the aggregated flood hazard as “flood hazard” for simplicity and use it 

for subsequent analysis and discussions. 
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Figure 7: Histogram of flood hazard.  

 

Figure 8: Time series of flood hazards for each location.  

Flood hazard also exhibits significant seasonality at both short and long time 

horizons. While such seasonality will naturally carried by independent variables 

used for forecasting, we removed yearly seasonality for convention by subtracting 

the 30-day rolling historical average centred on each observation’s day of the 

year. The demeaned flood hazard values are depicted in Figure 9. 
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Figure 9: Demeaned vs original flood hazard time series by locations.  
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4.2.2 Independent Data 

This report utilizes precipitation image data as the independent variable to 

predict flood hazard risk. The fluvial component of the GHDL framework is 

omitted in this analysis (Figure 3). We focus solely on the pluvial segment of 

GHDL because there are no credible long-term projections for fluvial data (such 

as water level or discharge). This is due to fluvial dynamics being influenced not 

only by climate change but also by infrastructure developments and other 

human interventions. Moreover, pluvial information plays a more significant role 

in flood modelling and has a broader impact than fluvial data. As a result, climate 

scientists often exclude fluvial components from climate simulations. By omitting 

the fluvial segment, we simplify the model without compromising its practical 

application—particularly for one-year forward projections in insurance pricing. 

Our results demonstrate robust predictive accuracy (Section 4.4).Precipitation 

data for the period from December 1, 2022, to October 31, 2024, was obtained 

from the ERA5 global reanalysis hourly dataset on single levels (Hersbach et al., 

2020). The selected geographical area spans from 4°N to 21.5°N and 96°E to 

107.25°E, encompassing the entire region of Thailand. The ERA5 hourly dataset 

provides total precipitation data at a spatial granularity of 0.25° by 0.25°, resulting 

in images with dimensions of 70-by-45 grids for each hourly observation. 

To ensure compatibility with the flood hazard data processing pipeline, the 

precipitation data underwent the following preprocessing steps: 

1. Temporal Aggregation: Hourly precipitation data were aggregated to 

daily frequency by summing precipitation values for each grid over 24-

hour periods. 

2. Seasonality Adjustment: The yearly seasonality of each grid was removed 

by subtracting the 30-day rolling historical average, centred on each 

observation’s day of the year, grid by grid. 

Figure 10 illustrates a comparison between the original and demeaned 

precipitation images for September 9, 2021. This preprocessing ensures the data 

is properly aligned with the flood hazard analysis framework, enhancing the 

accuracy of the subsequent modelling. 
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Figure 10: Demeaned vs original precipitation September 9, 2021.  

 

4.3 Model Specifications and Experimental Design 

Following the underwriting and renewal practices of property and casualty (P&C) 

insurance, which typically operate on an annual frequency, we extend the 

prediction gap to 365 days and use the previous 30 days of precipitation data as 

input. For example, to predict the flood hazard on date 𝑡, precipitation images 

from 𝑡 − 395 to 𝑡 − 366 are utilised. 

The Geo-Hierarchical Deep Learning (GHDL) connectivity structure for the area of 

interest is illustrated in Figure 11. Phitsanulok and Kamphaeng Phet are two leaf 

regions with no upstream areas. The remaining three regions are descendant 

regions that can utilise upstream information to refine their predictions. 
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Figure 11: GHDL model structure for Chao Phraya River basin.  

For each submodel, we employ a three-dimensional CNN with two hidden layers 

of architecture 32–64, using cubic kernels of size 3, with stride and padding set to 

1. Three-dimensional max-pooling layers with kernel size 2 and stride 2 are 

applied to reduce the height and width of feature maps after each CNN layer. 

Following the second CNN layer, the flattened output is transformed into a vector 

of length 128 using a fully connected neural network (NN) layer. This vector is 

utilised both for predicting the flood hazard at the current location and for 

feeding forward to refine the predictions of downstream regions. Each deep 

learning layer employs the Rectified Linear Unit (ReLU) activation function to 

introduce non-linearity. 

The objective function for the GHDL model combines the mean squared error 

(MSE) and an L2 norm penalty. The MSE evaluates the accuracy of the model, 

while the L2 penalty mitigates overfitting by constraining the magnitude of the 

model parameters. 

To ensure a complete calendar year of data is included in the testing set, we 

randomly draw one year for each day of the calendar year from the sample period 

(2019–-2024). For instance, for January 1, a random draw is made from January 1 of 

2019 to 2024, and this sample is added to the testing set. This process is repeated 

for all other days of the year. The remaining data forms the training set. We use a 

three-fold cross-validation approach to validate the model. The random sampling 

process is repeated multiple times, and the results demonstrate consistent 

robustness. 
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Additionally, to enhance model convergence, we normalize the flood hazard data 

for each location. 

As a benchmark, we select a local-context deep learning (LCDL) model with the 

same submodel architecture as the GHDL. LCDL does not incorporate the geo-

connectivity structure but is given the same number of parameters to ensure 

complexity fairness. Additionally, LCDL utilizes exactly the same input information 

as GHDL, ensuring that any performance differences can be attributed to the 

inclusion of geo-connectivity rather than differences in model capacity or data 

availability. 

 

4.4 Estimation of Flood Hazard 

Figure 12 presents the loss curves, measured as MSE with an L2 regularization 

penalty, to evaluate the modelling performance of the GHDL and LCDL models 

across training, validation, and testing datasets over multiple epochs. The red and 

grey dashed lines indicate the loss value and epoch at which convergence occurs, 

respectively. 

The GHDL model demonstrates faster convergence compared to the benchmark 

LCDL model and achieves superior performance across both training and 

validation metrics. This highlights the effectiveness of incorporating geo-

hierarchical connectivity for flood hazard prediction. The GHDL model’s ability to 

leverage upstream and downstream information provides a significant 

advantage in capturing the spatial and temporal dynamics of flood hazards. 

In contrast, the LCDL model, while simpler, is unable to achieve comparable 

accuracy. The lack of hierarchical dependencies limits its capacity to fully capture 

the complex relationships inherent in flood hazard prediction tasks. 
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GHDL 

 

LCDL 

Figure 12: Training, validation, and testing loss by epoch. GHDL achieves convergence at a lower loss 

across all three phases than LCDL. 

We further evaluate the forecasted flood hazards by examining model 

performance for each observation, with particular attention to extreme situations 

where flood hazards are high and trigger concerns. Figures 13 and 14 present the 

time series of observed versus predicted flood hazards for the testing set, along 

with their kernel density estimates (KDE) for GHDL and LCDL, respectively. 

In both figures, high flood hazard dates (observed ≥ 2) are highlighted, with red 

circles indicating missed predictions (predicted ≤ 1.5) and green triangles 

indicating correctly captured predictions (predicted > 1.5). The lower-right corner 

of the left panels reports the MSE and the ratio of correctly captured high-risk 

events. The right panels of both figures show the KDE of predicted and observed 

flood hazards by location. 

Consistent with the earlier loss analysis, the MSE for GHDL (ranging from 0.18 to 

0.27 across locations) is consistently lower than that of LCDL (ranging from 0.29 to 

0.56). In terms of high-risk event capture, the GHDL model significantly 

outperforms the LCDL model in descendant regions, while the performance is 

comparable in leaf regions. The KDE analysis further reveals that the GHDL 

model’s predicted hazard distribution aligns more closely with the observed 

distribution than the LCDL model, particularly in the high-risk tail, indicating 

better predictive accuracy for extreme events. 
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The observations presented in this report are generally consistent with the 

findings of Xu et al. (2022). 

 

Figure 13: GHDL testing set prediction vs observation. Results for five locations are shown in 

separate panels from top to bottom. In each panel, the left subfigure presents the observed (blue) 

vs. predicted (orange) flood hazard time series. Flood hazard dates exceeding two standard 

deviations above the mean are highlighted, with correctly captured events marked by green 

triangles and missed events marked by red circles. 
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Figure 14: LCDL testing set prediction vs observation. Results for five locations are shown in separate 

panels from top to bottom. In each panel, the left subfigure presents the observed (blue) vs. 

predicted (orange) flood hazard time series. Flood hazard dates exceeding two standard deviations 

above the mean are highlighted, with correctly captured events marked by green triangles and 

missed events marked by red circles. 
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5 Premium Pricing and Loss Estimation with Flood 

Hazard Factors 

As previously noted, we were unable to obtain credible insurance loss data with 

sufficient granularity to facilitate pricing analysis for this report. However, to 

demonstrate how the flood hazard factors predicted by the deep learning models 

can be applied in insurance pricing, we outline the methodological framework in 

this section. 

 

5.1 Methodological Framework 

Let 𝑌𝑘𝑡 be a random variable representing the total flood loss associated with the 

𝑘th insured building at location 𝑖 during the time period [𝑡 − 1, 𝑡] (𝑖 = 1, … , 𝐼; 𝑘 =

1, … ,𝐾, 𝑡 = 1,… 𝑇)6. In practice, we estimate 𝑌𝑘𝑡 by multiplying its corresponding 

damage ratio 𝑈𝑘𝑡 ∈ [0,1], with the insured building value 𝜃𝑘 that is, 𝑌𝑘𝑡 = 𝜃𝑘 ⋅ 𝑈𝑘𝑡 . 

Given a deductible 𝑑𝑘 and a limit 𝑙𝑘 the total claim of a flood insurance policy 𝑌𝑘𝑡
𝐿  is 

defined as below: 

𝑌𝑘𝑡
𝐿 = {

0 if 𝑌𝑘𝑡 < 𝑑𝑘 ,
𝑌𝑘𝑡 − 𝑑𝑘 if 𝑑𝑘 ≤ 𝑌𝑘𝑡 < 𝑙𝑘 ,
𝑢𝑘 − 𝑑𝑘 if 𝑌𝑘𝑡 ≥ 𝑙𝑘 .

 

 

To simplify the analysis, we take 𝑑𝑘 = 0, 𝑙𝑘 = 𝜃𝑘, that is 𝑌𝑘𝑡
𝐿 = 𝑌𝑘𝑡. Conceptually, for a 

specific insured building 𝑘, there should exist a monotonically increasing damage 

function ℎ𝑘: 𝑄𝑖𝑡 → 𝑈𝑘𝑡  that maps the flood hazard {𝑄𝑖𝑡 = 𝑞𝑖𝑡} to the corresponding 

loss event {𝑈𝑘𝑡 = 𝑢𝑘𝑡}. Let 𝑓𝑄𝑖𝑡 represent the probability density function of 𝑄𝑖𝑡. The 

pure premium, 𝑝𝑘𝑡, can be obtained by applying this damage function to the 

expected value of the flood hazard: 

𝑝𝑘𝑡 = 𝔼[𝑌𝑘𝑡
𝐿 ] = ∫ 𝑢𝑘𝑡

∞

0

𝜃𝑘 ⋅ 𝑓𝑄𝑖𝑡(𝑞𝑖𝑡)𝑑𝑞𝑖𝑡 = ∫ ℎ𝑘

∞

0

(𝑞𝑖𝑡)𝜃𝑘 ⋅ 𝑓𝑄𝑖𝑡(𝑞𝑖𝑡)𝑑𝑞𝑖𝑡

= 𝜃𝑘𝔼[ℎ𝑘(𝑄𝑖𝑡)].

 

 
6 Note that 𝑌𝑘𝑡 does not include the indexing of 𝑖 because the 𝑘th insured building corresponds to only one 
gauging site in our setting. Thus, indexing flood loss by 𝑘 is sufficient to represent it. 
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In this paper, we utilize a set of generalized linear models (GLM) to establish the 

relationship between flood hazard, building characteristics, and the loss ratio. We 

denote the claim frequencies (i.e., number of claims incurred) as 𝑁𝑘𝑡 , and the 

severity (i.e., loss ratio per claim) as 𝑈𝑘𝑡 , then we have 

𝔼[𝑌𝑘𝑡
𝐿 ] = 𝜃𝑘𝔼[𝑁𝑘𝑡]𝔼[𝑈𝑘𝑡]. 

 

We create separate GLMs for 𝑁𝑘𝑡  and 𝑈𝑘𝑡 , utilizing the forecasted expectation of 

river flow, �̂�𝑖𝑡, provided by the GHDL model, and the individual-level building 

characteristics, 𝐱𝑘 = (𝑥𝑘1, … , 𝑥𝑘𝑝)′: 

𝜈𝑘𝑡 = 𝔼[𝑁𝑘𝑡|�̂�𝑖𝑡 , 𝐱𝑘] = 𝑔𝑛
−1(𝜆𝑛�̂�𝑖𝑡 + 𝐱′𝑘𝛽𝑛),

𝜇𝑘𝑡 = 𝔼[𝑈𝑘𝑡|�̂�𝑖𝑡 , 𝐱𝑘] = 𝑔𝑢
−1(𝜆𝑢�̂�𝑖𝑡 + 𝐱′𝑘𝛽𝑢),

 

 where 𝑔𝑛 and 𝑔𝑢 are link functions with respect to frequency and severity GLM 

models, respectively; 𝜆𝑛 and 𝜆𝑢 are their regression coefficients which correspond 

to flood hazard factor; and 𝛽𝑛 and 𝛽𝑢 are 𝑝 × 1 regression coefficients associated 

with building characteristics. Here, (𝜆𝑛 , 𝛽𝑛) and (𝜆𝑢 , 𝛽𝑢) are estimated from 

historical observations. Finally, the net premium can be calculated as follow: 

𝑝𝑘𝑡 = 𝜃𝑘 ⋅ 𝜈𝑘𝑡 ⋅ 𝜇𝑘𝑡 . 
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6 Projecting Future Flood Hazards for the Chao 

Phraya River Basin 

Understanding and mitigating future flood hazards require robust projections 

that integrate climate simulation data with advanced modelling techniques. In 

this section, we employ climate projections from the latest generation of climate 

simulations, coupled with our deep learning framework, to assess potential flood 

hazards in the Chao Phraya River Basin under various climate scenarios. 

By integrating these climate projections with the flood hazard relationships 

learned by the deep learning model, we aim to generate spatiotemporally 

resolved forecasts of future flood risks. This approach provides valuable insights 

into how climate change could alter flood dynamics in the Chao Phraya Basin 

and enables scenario-based risk assessments, which are critical for underwriting 

decisions, pricing strategies, and portfolio risk management in the insurance 

industry. 

 

6.1 Climate Change Simulations 

Climate simulations are computational models that replicate Earth’s climate 

system. These simulations are built on physical laws, enabling predictions of 

climate variables like temperature, precipitation, and sea-level changes under 

different greenhouse gas emission scenarios (Geophysical Fluid Dynamics 

Laboratory, 2024). 

While these models operate on a global scale, downscaling techniques allow 

their results to be tailored for regional analyses, making them invaluable for 

understanding localized impacts, such as those on river basins. 

 

6.2 Shared socioeconomic pathways 

Climate projections are derived from distinct Shared Socioeconomic Pathway 

(SSP) scenarios, which encapsulate a spectrum of plausible futures shaped by 

varying socioeconomic trends, emissions trajectories, and climate-driving 



LIVING LAB REPORT   Global Asia Insurance Partnership 

 

45 
 

processes. In our projection analysis, we focus on four key pathways that are most 

extensively discussed in the climate research literature: 

• SSP1-2.6: A strong mitigation scenario that represents a slightly less 

stringent alternative. Emissions reach net zero shortly after 2050, with 

global temperature rise constrained to below 2.0°C by 2100. 

• SSP2-4.5: A “middle-of-the-road” scenario where societal and technological 

progress continues at current rates. Emissions begin to decline after 2050, 

but net zero is not achieved by 2100. This results in a global temperature 

rise of approximately 2.7°C by 2100. 

• SSP3-7.0: A medium-to-high emissions scenario where global cooperation 

weakens, and regional competition dominates. Emissions roughly double 

by 2100, leading to a temperature rise of about 3.6°C above pre-industrial 

levels by the end of the century. 

• SSP5-8.5: A high-emissions pathway characterized by fossil fuel-driven 

economic growth and minimal climate policy intervention. Emissions more 

than double by 2050 and continue to rise throughout the century, causing 

a global temperature increase of approximately 4.4°C by 2100. 

These scenarios provide a framework for exploring the range of potential climate 

futures, helping policymakers and researchers assess the implications of 

socioeconomic decisions and climate action. 

 

6.3 Climate Simulation Dataset 

We obtain daily precipitation (pr) simulation data from January 1, 2015, to 

December 31, 2100, from the Coupled Model Intercomparison Project Phase 6 

(CMIP6) dataset7 for four SSP scenarios. For each scenario, we select the default 

variant (r1i1p1f1) from MIROC68 as the representative model. Since the CMIP6 

 
7 CMIP6, accessed on December 1, 2024: https://esgf-ui.ceda.ac.uk/cog/search/cmip6-ceda/ 

8 MIROC6 (Model for Interdisciplinary Research on Climate version 6) is a state-of-the-art global climate model 
(GCM) developed by a collaboration of Japanese research institutions, including the University of Tokyo, National 
Institute for Environmental Studies (NIES), and the Japan Agency for Marine-Earth Science and Technology 
(JAMSTEC). It is a key contributor to the Coupled Model Intercomparison Project Phase 6 (CMIP6), which 
provides standardized climate projections for research and policy-making. 

https://esgf-ui.ceda.ac.uk/cog/search/cmip6-ceda/
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precipitation data covers the global scale, we crop it to focus on our region of 

interest and apply an interpolation method to make the precipitation images 

compatible with the input requirements of our deep learning model. 

Given that the ERA5 dataset used for model training provides precipitation data 

in meters per day (m/day), while CMIP6 pr is reported in units of kg m−2 s−1, we 

convert the CMIP6 pr values to total daily precipitation. The processed 

precipitation images are then used to infer future flood hazards for the Chao 

Phraya River Basin, enabling projections for the 21st century. 
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Figure 15: Projected changes in CMIP6 daily average precipitation between 2050-–2100 and 2000–-

2014.  
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6.4 Flood Risk Projections and Results 

Figure 16 presents the annual total precipitation time series for the Thailand 

region under each SSP scenario. The blue dots represent the total precipitation 

values, while the red line indicates the fitted linear trend over the years. Except for 

SSP126, the other three scenarios generally show an increasing trend in total 

precipitation. 

 

Figure 16: CMIP6 annual total precipitation by year.  

The climate simulations reveal a significant increase in precipitation over the Gulf 

of Thailand and the Andaman Sea, with the SSP585 scenario showing the most 

pronounced increase, followed by SSP245, SSP370, and SSP126. In inland Thailand, 

precipitation also generally increases, albeit at varying magnitudes and locations. 

In the middle of the country, we see less significant increases even decreases in 

total precipitation. 

Following the climate projections, we quantified the annual number of high flood 

hazard days (defined as flood risk hazard > 2) and high drought hazard days 

(defined as flood risk hazard < -2) for each location and SSP scenario. To assess 

relative changes compared to current climate conditions, we subtracted the 
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average annual high flood and drought hazard counts for the baseline period 

2019–2024 from the projected values. 

Figure 17 presents the changes in high flood and drought hazards based on 

CMIP6 climate projection inferences for the period 2019–2024. The box plots 

display the distributions of high flood hazard days (right) and high drought 

hazard days (left) for each location and SSP scenario. As the results represent 

changes relative to the baseline, distributions predominantly above the zero line 

(dashed black) indicate an increase in risk, while distributions below the zero line 

suggest a decrease in risk. 

Regions near the Gulf of Thailand, particularly Bangkok, Nonthaburi, and Pathum 

Thani, exhibit a significant increase in flood risk and a decrease in drought risk, 

likely driven by the pronounced rise in precipitation (Figure 17). Similar patterns 

are observed in Ang Thong, Sing Buri, Ayutthaya, as well as Uthai Thani, Chai Nat, 

and Nakhon Sawan for SSP245 and SSP370, though the magnitude of changes is 

less pronounced compared to Bangkok. 

Phitsanulok demonstrates relatively stable risks for both flood and drought, with 

some improvements under SSP126. In contrast, Kamphaeng Phet shows a 

consistent decrease in flood risk and an increase in drought risk across all SSP 

scenarios. 
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Figure 17: Changes in flood hazard based on CMIP6 climate projection inferences for the period 

2019–-2024.  
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7 Comparison with Commercial Flood Risk Models 

In this section, we compare the GHDL model specifications for the Chao Phraya 

River Basin with two prominent commercial flood risk models in the market: the 

RMS Inland Flood Risk Model (Jankowfsky et al, 2016) and the SCOR Oasis LMF 

Flood Model (Rimkus et al, 2016). For the RMS model, since the methodology 

manual for Moody's RMS Southeast Asia Inland Flood Risk Model is not publicly 

available, we use the manual for the RMS US Inland Flood Risk Model as a 

reference.  

Given the absence of insurance loss data, our discussion in this section will take a 

more qualitative approach.  The GHDL model offers benefits as a complementary 

and alternative tool compared to commercial models developed with extensive 

resources and engineering-driven pricing methodologies, The GHDL model 

excels in integrating future climate projections and addressing data limitations, 

making it particularly valuable for regions with limited data availability. 

By providing a climate-informed approach tailored for data-limited regions, the 

GHDL model enhances flood risk assessment and supports the development of 

innovative insurance products. We hope that the GHDL model serves as a 

reference for inland flood pricing for insurers, offering a foundation for further 

development and refinement. This model is designed to supplement existing 

commercial models, providing additional insights and improving the overall 

robustness of flood risk management strategies. 

The following table summarises the comparison of GHDL-based index insurance 

model with the two commercial models from various perspectives.  

 

 

 

 

 

 

 

 



LIVING LAB REPORT   Global Asia Insurance Partnership 

 

52 
 

Table 2: Comparison with Commercial Flood Risk Models 

Feature 
RMS US Inland 

Flood Model 

SCOR Oasis LMF 

Flood Model 

GHDL-based Index 

Insurance Model 

Objective 

Develop a 
probabilistic flood 
risk assessment 
model and support 
insurance pricing. 

Develop a modular, 
scalable framework 
for flood risk 
prediction and 
insurance pricing. 

Develop a flexible flood 
risk prediction model 
under the constraints 
of data limitation to 
support insurance 
pricing with actuarial 
meaning.  

Key Flood 

Types 
Fluvial, pluvial. 

Fluvial, pluvial, 
groundwater 
flooding, coastal 
flooding. 

Fluvial, pluvial. 

Core 

Methodology 

Combines rainfall-
runoff models, 
routing models, and 
inundation 
modelling with 
probabilistic event 
generation. 

Modular framework 
integrating 
stochastic models, 
physical models, and 
scenario-based 
assessments. 

Geo-Hierarchical Deep 
Learning (GHDL) 
combining CNNs and 
WNNs within a 
spatially hierarchical 
structure. 

Strengths 

High-resolution 
mapping. 

Modular, adaptable 
framework for 
different risk and 
hazard types. 

Robust handling of 
spatial dependencies 
through hierarchical 
modelling. 

Extensive calibration 
and validation with 
long historical data 
series. 

Integration of 
stochastic and 
scenario-based 
approaches. 

Effective even with 
limited data (Section 
2.1). 

Data 
PCA simulated 
Precipitation, 
Tropical cyclone rain. 

Historical 
hydrological data. 

Historical hydrological 
data, precipitation 
data.  

Flood Hazard 

Metrics 

Peak discharge, 
water level, and flood 
extent. 

Water level and 
discharge. 

Water level based 
aggregated flood 
hazard index derived 
from NHDC data. 
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Hydrologic 

Models 

Semi-distributed 
rainfall-runoff 
modelling. 

Statistical and 
physical models 
capturing river flow 
and flood extent. 

Omitted in future 
projections. 

Hydraulic 

Models 

2D shallow water 
equations for high-
resolution flood 
mapping (10-30m 
grids). 

1D (river flow) and 2D 
(floodplain) models 
combined with 
stochastic scenarios. 

Upstream/downstream 
interactions in GHDL. 

Deep 

Learning/AI 
None. None. 

GHDL integrates CNNs 
for local precipitation 
analysis and WNNs for 
fluvial flood dynamics. 

Climate 

Projections 
Not integrated. Not integrated. 

CMIP6 climate 
simulations under four 
SSP scenarios for 
future flood hazard 
projection. 

Validation 

Extensive validation 
against FEMA maps 
and gauge station 
data. 

Limited validation 
due to scarce 
granular claims and 
exposure data. 

Validated against 
observed flood hazards 
with performance 
compared to LCDL 
models. 

Output 

Resolution 

High (10-30m grids 
for inundation 
maps). 

Variable depending 
on data resolution 
and model 
configuration. 

Daily aggregated 
hazard indices at the 
regional level. 

 

In summary, each model has unique strengths and limitations. The RMS Inland 

Flood Risk Model excels in high-resolution flood mapping and probabilistic 

accuracy but lacks integration with future climate scenarios. The SCOR Oasis LMF 

Flood Model offers flexibility and adaptability but is often constrained by data 

gaps and coarser resolution. In contrast, the GHDL Model provides a climate-

informed approach tailored for data-limited regions, making it an effective tool 

for flood risk assessment and insurance applications in developing economies. 
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8 Implications 

As anthropogenic climate change intensifies, flood risks that were once 

considered secondary have now emerged as primary threats, particularly in 

vulnerable regions across Asia where data relevant data is limited, like the Chao 

Phraya River Basin. These escalating risks necessitate proactive measures in flood 

risk management. This report presents several implications based on the results, 

with a particular focus on addressing challenges within the insurance industry. 

While the Chao Phraya River Basin serves as a case study, the model has been 

validated in broader contexts, including the Mississippi River Basin (Xu et al., 

2022), making its findings relevant for other countries in Asia. 

In this section, we conclude several implications based on the modelling result of 

this report when writing this report, such as including industry-academia 

collaboration, infrastructure investment, risk diversification, and coastal 

protection. These approaches can enhance predictive modelling, strengthen 

flood defences, and improve insurance resilience against climate-induced risks. 

 

8.1 More Collaboration 

Collaboration between industry and academia is essential for addressing the 

complexities of flood risk. Insurers can benefit from partnerships with academic 

institutions to develop advanced predictive models that integrate climate 

projections and flood hazard assessments.  

A key aspect of this collaboration is data sharing—insurers can provide historical 

claims data, exposure information, and business insights, while researchers 

contribute expertise in climate modelling and risk assessment methodologies. 

Joint efforts can enable the creation of robust databases and improve access to 

historical loss and damage data, critical for refining insurance pricing and 

reserving strategies.  
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A programming package designed to replicate the modelling process described 

herein will also be provided to GAIP partners9. They can leverage this tool for in-

house testing using their proprietary policy and claim datasets, offering a cost-

effective way to explore flood risk modelling tailored to specific portfolios. By 

utilising this package, they can collaborate closely with researchers to fit the 

models to their specific needs and analyse the outputs. This collaborative 

approach not only enhances the practical application of the GHDL model but also 

ensures continuous improvement through shared insights and data. 

While centralised research can save resources and expand our ability in handling 

the emerging risks, regular knowledge exchange through industry-academic 

workshops, joint publications, and technical reports can further bridge the gap 

between research and practical application, ensuring findings are translated into 

actionable risk management solutions.  

By fostering collaboration, insurers and researchers can address data scarcity 

issues prevalent in developing regions, promoting a more informed and cohesive 

approach to managing future flood risks. 

 

8.2 Risk Reduction 

Strengthening Riverbank Infrastructure 

The results of this study underscore the pivotal role of riverbank infrastructure in 

mitigating flood risks. Climate projections indicate that the Chao Phraya River 

Basin will experience an increase in both the frequency and severity of flood 

events as climate change intensifies. Overflow incidents are projected to become 

more frequent, posing significant challenges to flood risk management in the 

region. Strengthening riverbank systems is essential to maintaining the safety 

and sustainability of communities and economies in this vulnerable area. 

For insurers, the resilience of riverbank infrastructure directly impacts the 

frequency and magnitude of flood-related claims. Enhancing riverbank defences, 

particularly in downstream areas like Bangkok where flood hazards are most 

 
9 This package will be available on the website of Global-Asia Insurance Partnership 
(GAIP), accessible only to GAIP partners through their registered accounts. 



LIVING LAB REPORT   Global Asia Insurance Partnership 

 

56 
 

acute, can substantially reduce financial exposure. Investments in flood control 

measures such as levees, embankments, and other protective structures can 

mitigate risks and improve loss ratios. 

Enhancing Coastal Protection 

Coastal regions, including areas near the mouth of the Chao Phraya River, face 

dual threats from riverine flooding and sea-level rise. The insurance industry has a 

vested interest in advocating for and investing in coastal protection measures, 

such as seawalls, mangrove restoration, and sustainable land-use practices. These 

initiatives can significantly reduce flood-related damages and, by extension, 

insurance payouts. Enhanced coastal protection also offers insurers opportunities 

to develop tailored products, such as coverage for coastal property owners who 

adopt adaptive measures, thereby aligning economic incentives with risk 

reduction goals.  

To address these challenges, it is crucial for both public and private stakeholders 

to recognise the implications of flood risks and support efforts to enhance 

riverbank and coastal resilience. While insurers may not directly finance 

infrastructure projects, they can play a key role in advocating for and advising on 

risk reduction strategies, highlighting the impact of flood defences on insurance 

costs and long-term resilience. By engaging with policymakers, urban planners, 

and local communities, insurers can contribute valuable insights that help shape 

effective flood mitigation measures, ensuring a more sustainable approach to 

managing flood risks.  

By supporting risk reduction initiatives, insurers can protect insured assets while 

also fostering long-term resilience. Beyond risk transfer, insurers can play a 

broader role in shaping climate resilience by advising on risk mitigation 

strategies, incentivising protective measures (e.g., through premium discounts), 

and engaging with policymakers to enhance flood preparedness. These efforts 

align with a holistic, integrated approach to closing protection gaps—a key 

theme in GAIP’s work—which emphasises a three-pronged strategy: (1) risk 

reduction, (2) increasing insurance penetration, and (3) fiscal risk financing. 

Furthermore, this discussion connects with GAIP’s "Beyond Protection" 

framework, which highlights the diverse roles insurers can play in supporting 

climate action, including (1) insurer, (2) risk advisor, (3) educator, (4) influencer, (5) 
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investor, and (6) wealth manager. By embracing these roles, insurers can move 

beyond traditional coverage models and contribute to systemic risk reduction, 

ultimately strengthening resilience against climate-induced flooding. 
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9 Conclusions 

In this report, we studied and presented a different approach to modelling flood 

risks and applied this approach to the Chao Praya River as a case study. 

Leveraging GHDL as the deep learning framework, we proposed a methodology 

tailored to the resource and data constraints of developing regions. This approach 

enables insurers to create flood hazard forecasts with minimal resource demands 

and limited data availability, making it particularly suitable for areas with sparse 

observational records (Section 2.1). Using water level as a proxy for flood hazard, 

we established a robust relationship between precipitation and flood risk, with 

the model successfully capturing the majority of high flood hazards at the time of 

underwriting (Section 4.4). 

Building on this foundation, we utilised climate simulations under four SSP 

scenarios to forecast future flood risks across various regions in Thailand. Our 

flood and drought hazard assessments highlight the disproportionate impacts of 

climate change across provinces. Regions closer to the Gulf of Thailand, such as 

Bangkok, Nonthaburi, and Pathum Thani, face heightened flood risks due to 

significant increases in precipitation, while other areas experience more complex 

patterns, with some regions showing stable or even improved risks under certain 

scenarios. 

This study underscores the importance of integrating localised climate 

projections into hazard modelling and risk management strategies, particularly in 

regions vulnerable to the uneven impacts of climate change. The results of this 

case study provide critical insights for policymakers and insurers to design 

targeted adaptation measures and enhance resilience against future flood and 

drought risks in Southeast Asia (Section 8). 

To make GHDL actionable for insurers, the next step is to test its applicability in 

real-world settings by integrating insurer-held exposure and claims data with the 

model’s flood hazard predictions. We encourage GAIP partners to utilise the 

provided programming package for in-house testing, allowing them to explore 

flood risk modelling tailored to their specific portfolios. By collaborating closely 

with researchers, they can fit the models to their unique needs, analyse the 

outputs, and continuously improve the model through shared insights and 
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data.  This collaborative approach will help validate the GHDL model's 

effectiveness in pricing, underwriting, and risk assessment, ultimately enhancing 

flood risk management strategies.  

Beyond flood risk, GHDL’s deep learning approach can serve as a foundation for 

developing similar frameworks to model other climate-related risks, such as 

typhoons, coastal flooding, or heatwave-related mortality. Insurers can explore 

how AI-driven models enhance catastrophe risk assessment, parametric 

insurance solutions, and loss reserving strategies. Engaging in joint research and 

proof-of-concept applications will help insurers shape the next generation of 

data-driven risk models tailored to their needs. 

  



LIVING LAB REPORT   Global Asia Insurance Partnership 

 

60 
 

A Appendix 

A.1 Discrete Wavelet Transform 

The discrete wavelet transform (DWT) is a linear operation that decomposes a 

signal in 𝐿2(ℝ) into a series of segments, facilitating a more efficient and accurate 

representation of signals. In the context of DWT, wavelets are defined as families 

of functions ℎ𝑎𝑏 , 

ℎ𝑎𝑏(𝑥) = |𝑎|−1/2ℎ (
𝑡 − 𝑏

𝑎
) ,  𝑎, 𝑏 ∈ ℝ, 𝑎 ≠ 0, 

generated from a single base function ℎ through the processes of dilation and 

translation (Daubechies, 1988). This method allows for the analysis of various 

signal components at different scales, making DWT a powerful tool in signal 

processing. 

Select a function 𝜙 from 𝐿2(ℝ) such that its family of translations, denoted as 

{𝜙(𝑥 − 𝑘), 𝑘 ∈ ℤ}) , forms an orthonormal set. The wavelet family associated with 𝜙 

is defined as follows: 

𝜙𝑗𝑘 = 2𝑗/2𝜙(2𝑗𝑡 − 𝑘),  𝑗, 𝑘 ∈ ℤ, 

It is evident that 𝜙𝑗𝑘 can be reformulated to match the format of function ℎ𝑎𝑏 , by 

setting 𝑎 = 2−𝑗 and 𝑏 = 2𝑗𝑘. Utilising 𝜙𝑗𝑘 as base functions, we can construct a 

series of linear spaces {𝑉𝑗 ⊂ 𝐿2(ℝ), 𝑗 ∈ ℤ}, where 

𝑉𝑗 = {∑𝐴𝑘
𝑘

𝜙𝑗𝑘(𝑥):∑ |𝐴𝑘|
2

𝑘

< ∞} ,  𝑗 ∈ ℤ. 

Assuming that 𝜙 is selected such that the spaces are nested, 

𝑉𝑗 ⊂ 𝑉𝑗+1,  𝑗 ∈ ℤ, 

and that 

⋃
𝑗∈ℤ

𝑉𝑗 is dense in 𝐿2(ℝ), 

we then define the complementary set of 𝑉𝑗 relative to 𝑉𝑗+1, creating another 

sequence of linear spaces: 
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𝑊𝑗 = 𝑉𝑗+1 − 𝑉𝑗 . 

There exist a function 𝜓, whose family of translations is orthonormal. The wavelet 

space of 𝜓, expressed as 

𝜓𝑗𝑘 = 2𝑗/2𝜓(2𝑗𝑡 − 𝑘),  𝑗, 𝑘 ∈ ℤ, 

linearly spans the sequence of spaces {𝑊𝑗 ⊂ 𝐿2(ℝ), 𝑗 ∈ ℤ}, where 

𝑊𝑗 = {∑𝐷𝑘
𝑘

𝜓𝑗𝑘(𝑥):∑ |𝐷𝑘|
2

𝑘

< ∞} ,  𝑗 ∈ ℤ. 

If a function 𝜙 is chosen in accordance with the nested and dense condition, any 

function 𝑔 ∈ 𝐿2(ℝ) can be uniquely represented as a convergent series within 

𝐿2(ℝ), with respect to 𝜙 and 𝜓 (see Härdle et al., 1998, for details of proofs and the 

methodology for deriving 𝜓 once 𝜙 is selecte.): 

𝑔(𝑥) =∑𝐴𝑘
𝑘

𝜙0𝑘(𝑥) +∑∑𝐷𝑗𝑘
𝑘

∞

𝑗=0

⋅ 𝜓𝑗𝑘(𝑥). 

This relation is known as the discrete wavelet transform (DWT) of 𝑔. The selected 

function 𝜙 is called scale wavelet, and the derivation of 𝜓 is called mother wavelet. 

The multiresolution expansion exhibits the property of localisation in both time 

and frequency domains. The summation over 𝑘 corresponds to localisation in 

time (shifts of functions 𝜙𝑗0(𝑥) and 𝜓𝑗𝑘(𝑥)). Conversely, summation over 𝑗 

corresponds to localisation in frequency. As 𝑗 increases, the associated frequency 

of 𝜓𝑗𝑘(𝑥) becomes higher, allowing for the analysis of finer details in the frequency 

domain. 

Given this nature of representation, the coefficients 𝐷𝑗𝑘  are referred to as “detail 

coefficients.” These coefficients capture the high-frequency information at each 

level of the decomposition, pinpointing the more nuanced aspects of the signal. 

Conversely, the coefficients 𝐴𝑘, known as “approximation coefficients,” represent 

the remaining signal information that is not captured by the detail coefficients. 

They essentially provide a smoothed or averaged version of the signal, reflecting 

its broader trends. 
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The time and frequency localisation properties of the DWT endow it with several 

desired characteristics, making it a powerful tool for analysing river flow data in 

flood risk management. First, river flow data is typically non-stationary, influenced 

by systemic factors such as climate change and seasonality, as well as occasional 

events like heavy rainfall. The ability of DWT to localise both time and frequency 

allows for a more precise analysis of transient features and anomalies in the 

signal (Daubechies, 1988). Second, DWT facilitates multi-resolution analysis of 

river flow data. This enables the decomposition of data into different scales, 

effectively capturing long-term trends, such as seasonal variations, and short-

term events, such as flash floods, within a unified framework. Third, river flow data 

can often be noisy, affected by factors like sensor inaccuracies or environmental 

interference. DWTs are particularly useful in denoising this data, thereby 

enhancing the quality of information crucial for making informed predictions and 

decisions. Owing to these capabilities, DWTs have been extensively applied in 

flood risk management to transform and analyse various data types (Kumar et al., 

2015, among others; Seo et al., 2015; see Shafaei and Kisi, 2016). 

  

(a) Discrete wavelet transform (b) Fast Fourier transform 

Figure A1:  Coverage of the time-frequency plane of the wavelet and Fourier based transforms  

In practical applications, when dealing with a discrete signal 𝑔[𝑛] and a scaling 

function 𝜙:ℝ → ℝ, the wavelet coefficients 𝐴𝑘 and 𝐷𝑗𝑘  are computed by 

progressively projecting the signal onto the scaling and mother wavelet 

functions. This projection starts from the highest selected frequency and 

proceeds to the lowest selected frequency (see Figure A2 for an example): 
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𝐴𝑘 =∑𝑔

𝑛

[𝑛]𝜙0𝑘(𝑛),

𝐷𝑗𝑘 = ∑𝑔

𝑛

[𝑛]𝜓𝑗𝑘(𝑛).
 

Notably, filtering a low-frequency signal using a higher-frequency filter does not 

result in the loss of information. Consequently, the original signal 𝑔[𝑛] can always 

be reconstructed accurately using the acquired wavelet coefficients. 

 

Figure A2: A 3-level discrete wavelet transform system  
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