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Introduction

Figure: Global economic losses by peril

in 2021, in USD billion and % share

Facts about flood risk:

1 Most frequent natural disasters.

2 Caused 1/3 of the natural disaster
related fatalities since 2011.

3 Around 29% of the world population
are exposed to flood risk.

4 Only 5% (34%) of the flood losses are
insured in the emerging (developed)
economies.
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No-longer-“Secondary” Secondary Perils

Figure: Insured natural catastrophe losses in USD billion
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2022 Top Economic Loss Flood/Drought Events

Figure: Economic Loss by Country.
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2022 Top Fatality Flood/Drought Events

Figure: Fatality by Country.
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Global Catastrophe Reinsurance Market

The Global property catastrophe reinsurance index has risen for six consecutive years,
totaling an approximate 65% cumulative increase. This marked the largest positive
shift in the Index since 2006, nearly returning it to levels seen in that year.

Figure: Global Property Catastrophe Rate-on-Line Index
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US vs Rest APAC Flood Insurance Market

U.S. property catastrophe reinsurance rates-on-line increasing by 30% at January 1st,
2023, reaching an all-time high and marking a 97% cumulative increase since 2017, the
last soft market’s low point, including a 25% rise from January to July 2023.

Figure: Regional Property Catastrophe Rate-on-Line Index
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US vs. Asia: Property Insurance Market Differences

Aspect US Emerging markets
Market Maturity Highly mature Varies, emerging

Regulatory Environment State-level regulation Country-specific, varied

Product Offerings Wide range, innovative Traditional, diversifying

Risk Exposure Hurricanes, wildfires Typhoons, monsoons

Technology Adoption Rapidly adopting
Mixed, rapid in some

countries

Customer Base High awareness
Growing awareness,

price-sensitive

Distribution Channels Mixed, incl. online
Agent/broker-dominated,

digital growing
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US vs. Asia: Property Insurance Market Differences

US

Usually NatCat
Exclusion

Hazard Specialized
Product

Asia

Soft

Low direct
premium

Overcapacity
in underwriting

Emerging market
products

e.g., Index-based
insurance
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NFIP - US National Flood Insurance Program

The US approach to flood insurance has been the
development of federally backed flood insurance through the
NFIP.

• Managed by the Federal Emergency Management
Agency (FEMA).

• Delivered through a network of over 50 insurance
companies and NFIP Direct.

• Covering buildings and contents.
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NFIP - Coverage, Communities, and Requirements

• Offers flood insurance to property
owners, renters, and businesses.

• Aids faster recovery post-flood events.

• Collaborates with communities for
floodplain management and
mitigation.

• Available in nearly 23,000
participating communities.

• Mandatory for high-risk areas with
mortgages from government-backed
lenders.

Figure: Total Policies in force 2023
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NFIP Challenges and Global Flood Insurance Insights

Debt from Large-Scale Disasters: NFIP borrowed over $19 billion due to losses
from 2005 and 2008 hurricanes and floods.

Figure: NFIP Annual Year-end Debt to Treasury in USD billion
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NFIP Challenges and Global Flood Insurance Insights

• Subsidized Insurance Issues: Older buildings (1/4 of the policies) near or below
base flood elevation before the completion of flood-risk map are undercharged to
maintain the property value.

• In-accurate risk capturing: Many new constructions are charged premiums
based only on average of historical loss, due to the low frequency of flood-risk
map updating.

• Low Insurance Penetration: Only around 50% of homeowners in flood-prone
areas have flood insurance. This lack of coverage increases the need for disaster
relief.

• Policy Lapse Rates: On average only 74% are in force after 1 year, dropping to
36% after 5 years. The lapse rate does not vary much across flood zoon.
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Literature Review and Research Gap

Difficulties in Flood Risk Modelling:

1 Empirical loss ratio models: low granularity
• E.g., US National flood map is calculated at the county level.

2 Physical models (modelling flood mechanism): costly, hard to transfer to other
market and region, hard to recalibrate.

3 Flood losses are heavily affected by anthropogenic effects.
• In Thailand Flood 2011, water was directed to rural area by leaking several levees

and dams to protect the high exposure Bangkok municipal region.
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Literature Review and Research Gap

Additional difficulties in Flood Risk Modelling, for emerging markets:

1 Data availability and resource constraints.

2 Change of land-use and urbanization.
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Spatio-temporal flood risk correlation across cities

(a) Extreme flood risk scenarios (b) Moderate flood risk scenarios
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Literature Review and Research Gap

Flood insurance and its risk modellings are a rather niche topic in the actuarial science
and insurance research.

• Boudreault et al. (2019) build a flood risk pricing method based on a chain of
physics based modules.
• Browne et al. (2019) find that county-wide housing development in Florida is

negatively associated with the mandatory National Flood Insurance Program.
• Kousky and Michel-Kerjan (2017) undertake a large-scale analysis of flood

insurance claims in the United States.
• Hu (2022) finds that the peer effects affect flood insurance decisions. One’s

demand of flood risk insurance increase by 1-5% when her distant connection
suffered a flood shock.
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ML Application on Flood Modelling in Engineering Journals

Figure: Prediction results summarized by Mosavi et al. (2018)
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Research Objective

In this project, we target to provide a new deep learning structure that can produce a
justifiable and transferable physics-based model for flood risk pricing.
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Problem Set Up

A key to food insurance pricing is to forecast the flood risk measure.

We use water discharge as the flood risk measure. Let Qit denotes the peak water
discharge at gauging site i = {1, ..., I}. We seek to determine the best-estimated Qit at
time t−1, that is

Q̂it = E [Qit |Qt−1,Wt−1] = f (Qt−1,Wt−1) , (1)

where Qt−1 and Wt−1 represent the water discharge information set and the weather
information set for all gauges prior to time t−1 until t− l . We use f (·) to denote the
mean estimation of the learned deep learning model.
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Model Architecture

For each city, the information integration process of the hierarchical deep learning
structure is as below. The physical hierarchy of cities (or locations) is determined by
their connectivity along the river channel.

Figure: Information Integration Process of Hierarchical Deep Learning Structure.
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Convolutional Neural Networks (CNNs)

• Architecture: CNNs are a class of deep neural networks, known for their
excellence in processing data with a grid-like topology, such as images.
• Key Components: They utilize convolutional layers, pooling layers, and fully

connected layers to capture spatial hierarchies and patterns in the data.
• Applications: Widely used in image and video recognition, image classification,

medical image analysis, and other tasks involving visual data.

Figure: Procedure of a 2-dimensional CNN system.
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A Hypothetical Example

The Proposed
Structure

Climate data are split to
train submodels.

Flood risk measures at all
locations are utilized to
optimize the full model
globally.
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A Hypothetical Example

While preserves all the information, the other advantages include

• the connectivity improves the interpretability,

• the reduced searching space leads to faster conversion time,

• the physical constraints reduce the risk of overfitting due to complication.
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Flood Insurance Pricing

Conceptually, for the kth insured building, there exists a damage function
hk : Qit → Ukt , which maps the water discharge observation {Qit = qit} to the
corresponding loss event {Ukt = ukt} in a monotonically increasing manner.
The pure premium can be obtained:

pkt = E[Y L
kt ] =

∫ Q+
i

Q−i

uktθk · fQ (qit)dqit =
∫ Q+

i

Q−i

hk (qit)θk · fQ (qit)dqit

=θk E [hk (Qit)] = θkhk (E [Qit ]) . (2)
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Flood Insurance Pricing

In this paper, we utilize a set of pooling generalized linear models (GLM) to establish
the relationship between water discharge, building characteristics, and the loss ratio:

E[Y L
kt ] = θk E[Nkt ]E[Ukt ], (3)

where Nkt is the random variable denotes the number of claims incurred or frequency,
and Ukt is the loss ratio per claim or severity.
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Flood Insurance Pricing

Let Xk =
(
xk1, ...,xkp

)′
denote a vector containing individual-level building

characteristics. We use separate GLMs to combine Xk with Q̂it :

νkt = E
[
Nkt |Q̂it ,Xk

]
= g−1n

(
λnQ̂it +X ′kβn

)
, (4)

µkt = E
[
Ukt |Q̂it ,Xk

]
= g−1u

(
λuQ̂it +X ′kβu

)
. (5)

Here, (λn,βn) and (λu,βu) are estimated from historical observations. It is worth
noting that νkt and µkt measure the relative risk of a building without being influenced
by its exposure θk . Finally, the net premium can be calculated as follow:

pkt = θk ·νkt ·µkt . (6)
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Empirical Analysis

• Laboratory: Mississippi River Basin.

• City clusters Cincinnati, Nashville,
Louisville, Indianapolis, St. Louis, and
Memphis.

• Hydraulic Data: Streamflow (USGS).

• Meteorological data: Daily
precipitation (PRISM) Raster data.

• Policy and Claim Data: The
National Flood Insurance Program.

Figure: Area of Interest.
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Deep Learning Structure for Area of Interest

We present two benchmark structures, as illustrated in panels (b) and (c). To maintain
consistency across all DL architectures, we ensure that

• each model has the same level of complexity in terms of parameters.

• all models use the identical pluvial and fluvial segments to incorporate both
hydraulic and meteorological information.

(a) Hierarchical DL (b) No Connection DL (c) No Spacial Information DL
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Precipitation Data Example

The precipitation raster of Indianapolis from December 28 to December 31 2020.

(a) Dec 28, 20 (b) Dec 29, 20 (c) Dec 30, 20 (d) Dec 31, 20
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Hydraulic Data Example

The logged water discharge distribution of Indianapolis from December 28 to
December 31 2020.

(a) Cincinnati (b) Memphis (c) Nashville (d) St. Louis
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Performance Measure

RMSE
To measure the severity prediction accuracy, we calculate training and testing RMSE
for different exceedance probabilities of our models.
Denote 1Qit

= 1{Qit ≥ F−1Qi
(1−α%)} as the indicator of a flood event at the most

extreme α% level, we have

RMSE (α) =

√√√√ 1

α · IT ∑
i ,t

(
Qit − Q̂it

Qit

)2

·1Qit
. (7)
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Performance Measure

Recall
Recall is a statistical measure commonly used in machine learning and information
retrieval to evaluate the accuracy of a model. It represents the fraction of correctly
predicted positive instances.

Recall =
True Positives

True Positives + False Negatives
,

Precision =
True Positives

True Positives + False Positives
. (8)
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Descendant and leaf cities

We define

• Descendant cities: cities with upper steam cities (able to use information from
upper steam).

• Leaf cities: cities without upper steam cities.

Hypothesis

The improvement of hierarchical deep learning structure is more significant on
descendant cities than leaf cities.
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Training and testing sample

To facilitate the analysis, we temporally split the sample into training (70%) and
testing sample (30%).

• Training sample: provide to the model for pattern detection.

• Testing sample: evaluate the performance of training sample.
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Model selection

Select the model that performs the best in the testing sample.

Table: Model selection.
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Baseline Performance in Flood Risk Forecasting

Table: Risk factor accuracy measured by RMSE and recall.
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Baseline Performance in Pricing

The hierarchical deep learning structure better forecasts the loss than the benchmarks.

Table: Pricing performance measured by net premium in training and testing sample.
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Baseline Performance in Pricing

To mitigate the influence of occasional outliers, we employed bootstrap resampling on
testing dataset to evaluate the pricing performance.

Table: Pricing performance measured by net premium and solvency capital.
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Robustness Test: Importance of Generated Risk Factor

The relative importance test shows that the hierarchical DL generate risk factor is the
most important factor in both the frequency and severity GLM.

(a) Frequency (b) Severity

Figure: Factor Relative Importance
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Robustness Test: Partial Dependence

We fited a GLM model that takes the realized water discharge and plotted its partial
dependence in the three Panels as dashed lines. Notably, the proposed hierarchical
structure’s forecasted risk factors exhibit the best approximation to the anchor.

(a) No Spatial DL (b) No Connection DL (c) Hierarchical DL

Figure: Forecasted Risk Factor Partial Dependence
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Conclusion

1 We proposed a physics-based hierarchical structure that ensembles flood
mechanisms into ML models.

2 The proposed structure utilize flood risk observed at secondary exposure regions
to conduct global optimization.

3 In addition, the physics-based hierarchical structure improves the interpretability
of the ML models and partially resolves the difficulty of flood risk prediction due
to anthropogenic effects.

4 Using the Mississippi river as an example, we demonstrate that the proposed
physics-based hierarchical structure has superior performance compared to
conventional structure.
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Next Step: Emerging Market

1 The proposed structure is intentionally tailored to fit the data and resource
constraints of developing countries.

2 Our research team is ought to test and make further custermizations to the
proposed framework.



Thank you!
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