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Foreword 

    

Nanyang Technological University (NTU) is a tech-focused institution committed 

to sustainability initiatives. The Global Asia Insurance Partnership (GAIP) is a 

tripartite partnership between the insurance sector, the supervisory community 

and academia with a vision to create a more resilient future for Asia. In support of 

this vision, GAIP and NTU have entered into a long-term strategic partnership to 

support GAIP's research and talent development initiatives. Working 

collaboratively, our aim is to deepen understanding of new, emerging, and 

accelerating risks that have the potential to shape the insurance sector’s future 

and to collaborate on initiatives to create a more resilient future.  

This first comprehensive report, undertaken with the Insurance Risk and Finance 

Research Centre (IRFRC) at Nanyang Business School as part of GAIP’s Living Lab, 

examines the intricate relationship between the pandemic and mortality trends as 

identified in different Asian countries and age groups. The report provides analysis 

and recommendations that can usefully assist both the sector and policy makers 

as we emerge from the pandemic and enter into a future of living with COVID-19 

as endemic, and also flags a range of broader issues associated with the insurance 

protection gap.  

In addition to the detailed findings and practical implications outlined in this report, 

this report is also a powerful demonstration of the potential of the GAIP-NTU 
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research collaboration through two specific ways. First, GAIP’s unique structure 

creates a bridge between insurance industry and academia which can help narrow 

the knowledge gap as demonstrated by this report.  

Second, this platform enables us to democratise academic knowledge. 

Policymakers and insurers seeking a comprehensive understanding of the 

mortality impact during the COVID-19 pandemic will find this report valuable. The 

insights and recommendations presented herein will foster dialogue, knowledge-

sharing, and action, ultimately contributing to the development of resilient 

insurance ecosystems and narrowing Asia’s protection gap. 

In closing, we would like to express our appreciation for the efforts of Jessica Dang, 

the report’s primary author, the support of Prof. Shinichi Kamiya (NTU) and Ms. Min 

Cheng, Senior Director of GAIP, for their invaluable guidance and constructive 

feedback. We would also like to thank the external reviewers and GAIP partners for 

their valuable contributions to this report. Their collective efforts have been 

instrumental in its success. 

Sincerely, 

 

Conor Donaldson 

CEO, Global Asia Insurance 

Partnership 

 

 

 

Jun-koo Kang 

Director, Insurance Risk and Finance 

Research Centre (IRFRC) 

 

 



Executive Summary 

Since COVID-19 was officially labelled a pandemic on 11 March 2020 by the World 

Health Organization (WHO), the virus has inflicted significant human, social and 

economic costs. On 5 May 2023, the WHO declared that COVID-19 no longer 

“constitutes a public health emergency of international concern” 1. We are now 

transitioning from managing a pandemic to living with COVID-19 as endemic.  

The mortality impact during the COVID-19 pandemic bears significant 

ramifications for insurers, policymakers, and a wide spectrum of stakeholders. 

Numerous studies have been published in recent years examining the impact of 

COVID-19 on mortality, most of these studies have placed an emphasis on 

examining the impact of the COVID-19 pandemic on developed countries in 

Europe and North America. Little has been done to study the mortality impact of 

the pandemic in East and Southeast Asia, particularly from an actuarial perspective. 

This study aims at increasing our understanding of the mortality impact of the 

COVID-19 pandemic in East and Southeast Asia and our forward-looking 

perspective in regard to mortality on what to expect from COVID-19 as endemic.  

This is a technical report conducted as part of the Living Lab of the Global Asia 

Insurance Partnership. This report details the data analysis performed, explains the 

stochastic mortality model adopted for the analysis, and based on the analysis, 

presents our observations and discusses implications and recommendations for 

life insurers and policymakers.  

The focus of the study is the mortality impact from the COVID-19 pandemic. 

Nonetheless, we also make some observations about the general long-term 

mortality trend.  

The countries we consider in this study are:  

• Singapore 

 
1 https://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-
international-health-regulations-(2005)-emergency-committee-regarding-the-
coronavirus-disease-(covid-19)-pandemic 

https://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic
https://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic
https://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic
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• Indonesia 

• Japan 

• South Korea, which we refer to as Korea hereinafter for brevity. 

• Malaysia 

• England and Wales (E&W) 

We include England and Wales in this study for comparison purpose.  

For each of these 6 countries, we conduct the following analysis: 

• Analyze their pre-pandemic long-term mortality trend in the past few 

decades 

• Analyze their short-term mortality trend during the COVID-19 pandemic  

• Quantify the mortality shock during the pandemic using a stochastic 

mortality model  

• Forecast mortality rates in the next few decades  

• Estimate the number of excess deaths during the COVID-19 pandemic and 

reconcile with excess deaths estimation in other work 

Key findings from this study include: 

• In aggregate, the mortality experience has deteriorated during the COVID-

19 pandemic in the countries we consider.  

• Among the 6 countries we considered, Singapore, Japan and Korea have the 

least impact based on data up to 2022. Thus far they have lost about 4-6 

years’ worth of mortality improvement because of the pandemic, but the full 

impact of the pandemic on their mortality remains to be seen. England and 

Wales lost about a decade’s worth of mortality improvement during the 

pandemic while Malaysia lost about two decades’ worth. Indonesia’s 

mortality based on the 2020 data has returned to a level last seen in 1990s.  

• The mortality impact also varies by age. In Singapore, Korea, Malaysia and 

E&W, younger adults experienced a worse shock relative to their normally 
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low mortality level than older population, although in absolute terms, more 

older people died during the COVID-19 pandemic than younger people.  

• Excess deaths can be estimated using the same stochastic mortality model 

for modelling the pandemic impact. The estimated excess deaths in these 

countries are in similar range as excess deaths reported in other studies, 

which use very different, sometimes much more complicated models.  

• Significant tail risk remains in terms mortality risk and longevity risk.  

• The long-term trend of mortality improvement in absence of the pandemic 

in recently developed economies such as Singapore and Korea have slowed 

down and are converging to the rate of mortality improvement in Japan.  

The key implications from the study and our recommendations to life insurance 

practitioners and policymakers are: 

• Mortality experience monitoring and data collection: the mortality 

experience is still evolving and it is important that life insurance players 

continue to monitor their experience. Timely and granular mortality data 

collection is crucial to enable better monitoring of mortality experience and 

prompt quantification of the impacts, in order to inform business practices 

and public policies. 

• Mortality modelling: the two-parameter-level model developed in this 

study can be used as a tool for capturing the age and period-specific impact 

of mortality shocks, like those caused by the pandemic, enabling insurance 

companies to assess the impact on their portfolios and make future 

mortality rate forecasts. 

• Risk management: life insurance players should seek to diversify their 

portfolios, avoid concentration in negatively impacted regions and age 

groups, and look to review the impacts of the pandemic on the Embedded 

Value of their existing portfolio. We have provided tools to help conduct this 

assessment under the various scenarios considered. These tools are 

provided as electronic supplementary materials on the website of Global-

Asia Insurance Partnership (GAIP), accessible to GAIP partners. These tools 

include R codes, simulated mortality rates, and multipliers to mortality rates 
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based on the simulated mortality rates. In addition, policymakers and 

regulators should incorporate pandemic scenarios into stress testing and 

prudential management requirements or update the scenarios where these 

are already a requirement. 

• Protection gaps: the study shows that the pandemic has implications on 

mortality, longevity and health protection gaps, and the pandemic had also 

highlighted the disparity in the health gap. A holistic, multi-stakeholder 

approach to addressing the protection gaps, as suggested in the GAIP paper, 

“About the Protection Gaps”, is encouraged.  

• Morbidity impact: COVID-19 has had an impact on morbidity, leading to 

increased hospitalizations and delayed care, which has financial and 

healthcare resource implications. Insurers should study the morbidity 

impact in their products, and collaboration between governments, insurers, 

and researchers is encouraged to assess the long-term morbidity impact of 

the virus. 

It is important to note that, like any research project, there are certain limitations 

within this study. We encourage readers to refer to Section 7 for a more 

comprehensive discussion of these limitations. 
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1 Introduction 

We conduct this study to review the mortality experience in the East and 

Southeast Asia region during the COVID-19 pandemic, evaluate how much the 

mortality experience has deviated from its long-term trend, and assess the 

trajectory and range of outcomes of how mortality may evolve in the next few 

decades. In absence of an industry-wide study of the mortality experience during 

the COVID-19 pandemic, this report attempts to offer a timely update of the impact 

on overall population mortality in this region. We hope the results and discussions 

presented in this report will inspire life insurance practitioners in the region to 

conduct a forward-looking evaluation of the COVID mortality impact in their own 

portfolio. To that end, this report serves as a technical roadmap on how such 

exercise may be carried out. The numerical results presented in the report can also 

be used as a baseline for comparison.  

We choose to study Singapore, Indonesia, Japan, Korea and Malaysia because 

these are the countries for which we can find reliable mortality data during the 

COVID-19 era. We estimate the magnitude of mortality shocks in these countries 

since 2020 so that we can compare the mortality impact by country, by time 

periods, and by age groups, and make forecasts on how the shocks may dissipate. 

Given the uncertainty on how the elevated mortality level during the pandemic 

may return to normal, we utilize Monte Carlo simulations to gain insight into the 

distribution of outcomes we may expect in the future. In particular, the Monte Carlo 

simulations reveal the size of the tail risk in mortality and in longevity. 
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2 Mortality Data and Pre-pandemic Mortality Trend 

To study mortality trends in the East and Southeast Asia region, we start by 

gathering mortality data for countries and territories in this part of the world. We 

collect population mortality data from publicly available sources such as the 

Human Mortality Database2, United Nation’s World Population Prospects 20223, 

and national statistical offices in some countries. Details of the data source for each 

country and modifications made to data from these sources are outlined in 

Appendix A. The modifications are made to close small gaps in the data so that the 

data conform to the format we require for our modelling purposes.    

In this section, we present the age-standardized mortality rates of the countries we 

collected data from, discuss their life expectancies and apply a stochastic mortality 

model to quantify their long-term mortality trend.  

2.1 Age-standardized mortality rate 

Figure 1 depicts the evolution of age-standardized mortality rates in each of the six 

countries over the period we collect mortality data for, up to 2019. The age-

standardized mortality rates are calculated based on the age mix in the WHO 

standard population (Ahmad et al., 2001). Interested readers may find such age mix 

in Figure 28 in Appendix A.  

The standardized rates allow us to fairly compare the overall mortality rate across 

different countries, but by definition the age-standardized mortality rates differ 

from the overall mortality rates of each country. It is worth noting that in this 

illustration, the age-standardized mortality rates do not reflect the change in the 

population age-mix over the observation period in each individual country, which 

can be substantial for some.  

 
2 https://www.mortality.org/ 
3 https://population.un.org/wpp/ 

https://www.mortality.org/
https://population.un.org/wpp/
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Figure 1 suggests that since 1970, the mortality rates have improved in all six 

countries considered. However, there are still clear gaps in the absolute level of 

mortality among these countries. Indonesia has the highest level of mortality while 

Malaysia ranks the second highest. Note that the hump observed in the Indonesia 

mortality rates is caused by the 2004 Indian Ocean tsunami. Singapore and Korea 

also had elevated mortality rates in the past, but the experiences have quickly 

improved and have now reached similar levels to Japan and England and Wales. 

The speed of improvement varies by country and by time periods. We will explore 

the trend in mortality improvement more closely in Section 5.1. 

Figure 1: Age-standardized mortality rate of Singapore, Indonesia, Japan, Korea, Malaysia and 
England & Wales from 1970 to 2019, where data are available. The age-standardized mortality rate 
is a weighted average of age-specific mortality rates, where the weights are based on the age mix 
of the WHO standard population (Ahmad et al., 2001). 

 

2.2 Life expectancy 

In this section, we review the two definitions of life expectancy, a commonly used 

measure of overall mortality level in a population and explain their similarities and 

differences.  

Let 𝜇𝑥,𝑡 denote the force of mortality at age 𝑥 in time 𝑡. The period life expectancy 

at age 𝑥 in time 𝑡, which we denote as 𝑒𝑥,𝑡
𝑃  , is calculated as  
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𝑒𝑥,𝑡
𝑃 = ∑ 𝑒− ∫ μ𝑥+𝑠,𝑡

𝑢

0
𝑑𝑠∞

𝑢=0 .  

It can be interpreted as the mean age of death for a hypothetical cohort of age 𝑥 

at time 𝑡, whose mortality experience follows the age-specific mortality rates as of 

time 𝑡 . In other words, the period life expectancy ignores any mortality 

improvement that is expected to occur to this cohort from time 𝑡  and beyond. 

Therefore, the cohort in the definition of period life expectancy is only considered 

a hypothetical one. Despite the drawback of ignoring long-term mortality 

improvement, period life expectancy provides a snapshot of the overall mortality 

level of a population in any given year. It is also the life expectancy measure 

commonly cited in official statistics or newspaper articles. 

In contrast, the cohort life expectancy at age 𝑥 in time 𝑡, which we denote as 𝑒𝑥,𝑡
𝐶 , is 

calculated as  

𝑒𝑥,𝑡
𝐶 = ∑ 𝑒− ∫ 𝜇𝑥+𝑠,𝑡+𝑠

𝑢

0
𝑑𝑠∞

𝑢=0 .  

It can be interpreted as the mean age of death for a cohort of population with age 

𝑥 at time 𝑡, whose mortality experience follows the natural evolution of mortality 

rates since time 𝑡. This is a more realistic measure of how long a cohort at a certain 

age is expected to live. For example, if an insurance company were to insure an age 

𝑥 in year 𝑡, then the insurer should expect the age 𝑥 to live for 𝑒𝑥,𝑡
𝐶  years, rather than 

𝑒𝑥,𝑡
𝑃  years, on average. However, measuring the cohort life expectancy from 

historical data would require a long history of data that cover a cohort’s mortality 

experience from birth to extinction. Reliable cohort data are often unavailable, 

especially in developing countries. In addition, projection of future cohort life 

expectancy is sensitive to the assumptions chosen for future mortality 

improvement. 

We should caution that under the assumption of steady future mortality 

improvement, the period life expectancy will understate the longevity of a cohort 

compared to the cohort life expectancy, sometimes quite substantially. Interested 

readers can refer to Guillot (2011) for a comprehensive discussion of period versus 

cohort life expectancy.  
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Figure 2 illustrates the period life expectancy as of age 30 and age 65, respectively, 

from 1970 to 2019 where data are available.  

Figure 2: Historic Period life expectancy from 1970-2019 of age 30 (upper panel) and age 65 
(lower panel) of Singapore, Indonesia, Japan, Korea, Malaysia and England & Wales. 

 

 

The trend in period life expectancy at both age 30 and age 65 mirrors the trend in 

age-standardized mortality rates we observe in Figure 1 to a large extent. The most 

noticeable difference between Figure 1 and Figure 2 is that the gap in life 

expectancy between Indonesia and the other countries seems much smaller than 

the gap in their age-specific mortality rates. This is due to the much higher infant 

mortality in Indonesia than the other countries, particularly in the earlier data 

periods. Given infant mortality has no impact on period life expectancy at age 30 
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or 65, the gaps between Indonesia and the other countries in Figure 2 seem much 

smaller than in Figure 1. It is also worth noting that in 2019 the life expectancy at 

age 65 (20.7 years) in Singapore is 57% longer than that in Indonesia (13.2 years), 

and 35% longer than that in Malaysia (15.4 years). This signifies remarkable 

differences in the need for retirement income among these countries in current 

times, and room for future mortality improvement in less developed countries such 

as Malaysia and Indonesia. 

2.3 Stochastic mortality model 

Movement in mortality over time can be attributed to trend, shock and an 

idiosyncratic component (Dickson et al., 2019). The trend describes the gradual 

change in mortality over a long period of time, although the degree of the gradual 

change varies by age. Shock refers to any short-term sharp change to mortality, 

like a war or the COVID-19 pandemic. The idiosyncratic component captures the 

remaining random variation in the mortality changes. For example, in Figure 1, the 

generally decreasing slope of the mortality rates in each country shows the trend 

of mortality movement; the occasional bump in the mortality data series, for 

example the hump in 2004 in Indonesia due to the Indian Ocean tsunami or the 

increase in mortality rates after 2019 due to COVID which we will see in Section 3.3, 

are shocks; the fluctuations year-on-year along the generally decreasing line of 

historical mortality rates are the idiosyncratic component.  

A well-designed stochastic model can reflect all three components of mortality 

variations and allows us to forecast future mortality with all three components 

taken into consideration. For this reason, we use stochastic mortality model for this 

study. 
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2.3.1 The Lee-Carter Model 

The Lee-Carter model (Lee & Carter, 1992) is a classic model for long-term mortality 

trend. Let 𝑚𝑥,𝑡 denotes central death rate at age 𝑥 in year 𝑡. The model assumes the 

log central death rate is described by a stochastic process as follows: 

Equation 1: The Lee-Carter Model 

log 𝑚𝑥,𝑡 = 𝑎𝑥 + 𝑏𝑥𝑘𝑡 + 𝜉𝑥,𝑡 

where 𝑘𝑡 follows a random walk with drift such that 

𝑘𝑡 = 𝑘𝑡−1 + μ + ϵ𝑡 ,    𝜖𝑡     ∼
𝑖.𝑖.𝑑. 𝑁(0, σ2) 

In this model, 𝑎𝑥 represents the long-term average log central death rate of age 𝑥 

over the data period; 𝑘𝑡 captures the overall change in mortality level over time and 

is also known as the mortality index; 𝑏𝑥 reflects age 𝑥’s sensitivity to changes in 𝑘𝑡 ; 

𝜉𝑥,𝑡 is a random error that is typically small and we assume it is negligible in this 

study.  

As its structure suggests, the Lee-Carter model captures the trend and 

idiosyncratic component of the mortality changes over time, but it fails to consider 

any shocks. Thus, in Section 4.1 we describe how we use a two-parameter-level 

model to estimate the impact from the COVID-19 pandemic.  

2.3.2 Estimated parameters of Lee-Carter model 

We estimate parameters in the Lee-Carter model using data up to 2019. Table 1 

shows the estimated 𝜇 and 𝜎, which describe the random walk with drift process 

that 𝑘𝑡 follows.  

Table 1: Estimated 𝜇 and 𝜎 from the Lee-Carter model based on pre-pandemic data 

 Singapore Indonesia Japan Korea Malaysia E&W 
𝜇 -0.331 -0.148 -0.270 -0.494 -0.179 -0.187 
𝜎 0.196 0.238 0.260 0.230 0.153 0.232 
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Figure 3 to Figure 5 show parameters 𝑎𝑥, 𝑏𝑥 and 𝑘𝑡 estimated from the Lee-Carter 

model. A few observations can be drawn from the parameters estimated: 

• There is larger variation in the estimated values of 𝑎𝑥, the long-term average 

log central death rate of age 𝑥  over the data period, between different 

countries at younger ages than older ages. The variation in 𝑎𝑥 at younger 

ages reflects the variation in socioeconomic development as well as 

accessibility and quality of health care in these countries. On the other hand, 

the smaller variation in 𝑎𝑥 at older ages reflects the natural force of aging.  

Figure 3: 𝑎𝑥 estimated with pre-COVID data fitted to the Lee-Carter model. 

 

• The estimated values of parameter 𝑏𝑥, which represents the sensitivity of 

the mortality rate in each age group relative to long-term mortality trend, 

show that the range and shape of such sensitivity across different age 

groups differ by country. More specifically, the range of 𝑏𝑥  is larger in 

developing countries like Indonesia and Malaysia than the comparison 

countries, suggesting greater variation in how much the mortality rates 

are improving across age groups relative to the overall long-term mortality 

trend. In addition, the sensitivity tends to peak at the youngest age group 

in Indonesia, Korea and Malaysia but only peak at age 65-75 in Singapore, 

Japan and E&W. This suggests that in Indonesia, Korea and Malaysia, the 
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younger age groups’ mortality is improving the most relative to the other 

age groups but in Singapore, Japan and E&W, it is the 65-75 age groups 

that are improving the most, relatively speaking.  

Figure 4: 𝑏𝑥 estimated with pre-COVID data fitted to the Lee-Carter model. 

 

Figure 5: 𝑘𝑡 estimated with pre-COVID data fitted to the Lee-Carter model. 

 

• The overall long-term mortality trend measured by parameter 𝑘𝑡 varies from 

country to country and the trend is commensurate with the long-term trend 
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we observe in Figure 1. The hump in 2004 in Indonesia is an indication that 

𝑘𝑡 in Indonesia may not follow the random walk with drift in the Lee-Carter 

model, but we ignore this deficiency given the focus of this study is the 

mortality impact from COVID-19. 
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3 Mortality Trend in the COVID-19 Pandemic 

In this section, we discuss factors that contribute to the mortality shocks during 

the COVID-19 pandemic and examine the empirical evidence of these shocks.  

3.1 Factors impacting mortality during the COVID-19 pandemic 

The COVID-19 pandemic has led to shocks to mortality experience that deviate 

from the long-term trend. The shocks to mortality can be broadly attributed to a 

number of sources. We list these sources in descending order of significance, first 

for those contributing to excess deaths and then for those contributing to avoided 

deaths in the pandemic.  

• Excess deaths due to acute COVID-19 infection. 

o The SARS-CoV-2 virus often causes suppurative pulmonary infection 

which leads to septic shock and multi organ failure, and eventually 

results in deaths (Elezkurtaj et al., 2021).  

o The virus could also impact cardiovascular system and cause deaths 

(Long et al., 2020).  

o Risk factors for mortality caused by COVID-19 infection include older 

ages, male sex, obesity, and comorbidity such as hypertension, 

diabetes, cardiovascular disease and cancer (Elezkurtaj et al., 2021; 

Noor & Islam, 2020; Zhang et al., 2023).  

o Disadvantaged socioeconomic status has also been identified as a 

risk factor in many studies (Hawkins et al., 2020; Wachtler et al., 2020; 

Yates et al., 2022).  

o Post-acute sequelae of COVID-19 can lead to worse health outcomes 

and even deaths. Al-Aly et al. (2021) show that 30 days after COVID-19 

infection, people exhibit a higher use of health resources and risk of 

death. The study identifies that the SARS-CoV-2 virus can cause 

damage in multiple organs and systems in human body.  

 



LIVING LAB REPORT  Global Asia Insurance Partnership 

22 

 

• Excess deaths due to delayed medical care, avoidance of medical care, and 

strain on the health care system. 

o Czeisler et al. (2020) showed that since the start of the pandemic to 

June 2020, as much as 41% of adults in U.S. had delayed or avoided 

medical care. Among them, some of the more physically vulnerable 

groups such as people with underlying medical conditions and with 

disabilities are more prevalent in avoiding urgent care.  

o In Wai et al. (2022), it is identified that there was a significant 

reduction in emergency department visits in the first 8 months of the 

COVID-19 pandemic in Hong Kong, which was associated with an 

increase in deaths certified in the emergency department. The 

findings suggest that people are avoiding emergency care during the 

pandemic, and the avoidance of care resulted in patients ending up 

in the emergency department in a worse state than the pre-

pandemic trend and dying at a higher rate.   

o Dang et al. (2022) studies Medicare hospital admissions in over 4,000 

U.S. hospitals. They found that admission for non-COVID diagnoses 

have fallen sharply since March 2020 and remained low through 

September 2021. However, the mortality after hospitalization for non-

COVID diagnoses has risen by more than 20% and the increase in 

mortality is even higher in hospitals with high COVID-19 caseloads. 

The authors identify disruption to healthcare access due to COVID-19 

as a cause for the increase in mortality. 

 

• Excess deaths due to change in behaviour during the pandemic.  

o White et al. (2022) showed that in the U.S., alcohol-related deaths 

increased by about 25% in 2020 compared to 2019, while the number 

of opioid overdose deaths increased by 38% and the number of 

deaths involving synthetic opioids such as fentanyl increased by 55%. 

 

• Avoided deaths due to reduction in other transmissible diseases such as 

influenza and pneumonia as a result of the non-pharmaceutical 

intervention (NPI) measures in place to reduce COVID-19 infection. 
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o Hills et al. (2020) points out that influenza infections during the 2020 

influenza season in Australia and New Zealand was at historically low 

levels, and the authors attribute it to NPIs in place.  

o According to Kung et al. (2021), in New Zealand, between week 13 – 42 

of 2020, the mean weekly all-cause death rate was 11% lower than in 

2015–19. 

 

• Avoided deaths due to fewer road traffic and occupational accidents, as well 

as reduced air pollution due to lock-down. This could be an important 

contributing factor in the densely populated East and Southeast Asian 

countries.  

o Chen et al. (2020) shows that the lock-down measures implemented 

in Wuhan, China in early 2020 to contain the COVID-19 outbreak led 

to improvements in air quality, which reduced non-COVID-19 deaths 

by around 9,000. About 65% of the reduction in deaths is attributed 

to cardiovascular disease and Chronic Obstructive Pulmonary 

Disease.  

o Yasin et al. (2021) shows decrease in annual road death in 33 out of 42 

countries in 2020 compared with 2019, some as much as 25%. 

3.2 Reported COVID deaths and all-cause deaths 

The level at which excess deaths occurred vary significantly between countries, 

among different age groups within a country, and across different time periods 

during the COVID-19 pandemic. Hence, we study in more detail different statistics 

of the mortality data in these countries before and after the COVID-19 pandemic.  

In this study, we focus on all-cause mortality during the COVID-19 pandemic rather 

than COVID-related mortality because the all-cause mortality reflects the true 

burden each country has taken on during the pandemic. This also avoids any 

inconsistency in the definition of COVID-related deaths. The definition of “die with” 

versus “die of” COVID-19 varies by countries and even within a country, the 

definition varied at different times during the pandemic. The gap in the capability 
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to accurately track and report COVID-related deaths also jeopardizes a fair 

comparison of mortality experience between countries.  

Nevertheless, to provide more context for our analysis, we compare in Table 2 the 

COVID-19 deaths per 1,000 population and change in all-cause deaths per 1,000 

population in the data we gathered. The COVID-19 deaths for all countries but E&W 

are reported by the World Health Organization whereas the COVID-19 deaths for 

E&W are reported by the Office for National Statistics, UK. The blank entries 

represent data not yet available.  

Table 2 shows that the reported COVID deaths cannot fully explain the change in 

all-cause mortality since the pandemic in any case. This is as expected because 

multiple factors contribute to shocks to all-cause mortality during the pandemic, 

as discussed at the beginning of Section 3.1. Interestingly, for E&W the reported 

COVID deaths in 2020 and 2021 exceed the increase in all-cause deaths from 2019. 

This could be caused by several factors contributing to all-cause deaths that offset 

each other.  

Table 2: Deaths per 1,000 population - COVID vs. all-cause deaths 

 COVID deaths 
All-cause 

deaths 
Change in all-cause deaths 

from 2019 
Country 2020 2021 2022 2019 2020 2021 2022 
Singapore 0.01 0.20 0.22 5.04 0.14 0.78 1.24 
Indonesia 0.08 0.45 0.06 7.54 1.43   
Japan 0.03 0.12 0.31 11.15 -0.03 0.56 1.10 
Korea 0.02 0.09 0.52 5.75 0.19 0.43 1.45 
Malaysia 0.01 0.94 0.16 5.25 -0.19 1.53  
E&W 1.46 1.24 0.55 8.95 1.29 0.88 0.77 

3.3 Age-standardized mortality rate and life expectancy 

Figure 6 and Figure 7 illustrates the age-standardized mortality rate and period life 

expectancy, respectively, of each country from 2015 to 2022, where data are 

available. 
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Figure 6: Age-standardized mortality rate of Singapore, Indonesia, Japan, Korea, Malaysia and 
England & Wales from 2015 to 2022, where data are available. The age-standardized mortality rate 
is a weighted average of the age-specific mortality rates, where the weights are based on the age 
mix of the WHO standard population (Ahmad et al., 2001). 

 

Figure 6 shows that the mortality rates in all the Asian countries we study deviate 

from the trajectory of their historical trend due to the COVID-19 pandemic, but the 

timing and the magnitude of such deviation varies by country. 

Most notably, the less developed countries such as Indonesia and Malaysia have 

observed much higher mortality increase than the more developed countries such 

as Japan, Korea, and Singapore. In Indonesia, the significant increase in mortality 

can be observed as early as 2020 whereas the other four Asian countries all 

observed a small mortality improvement in 2020, primarily as a continuation of the 

pre-pandemic trend. The mortality rates in Singapore and Malaysia increased in 

2021, mostly driven by the Delta variant and the onset of the Omicron variant of the 

SARS-CoV-2 virus, whereas the mortality rates in Japan and Korea continues to 

decrease slightly in 2021. In 2022, Singapore and Korea had steady increase in 

mortality while Japan observed a larger increase in mortality rates in 2022. It is 

worth highlighting that the mortality experience of England and Wales was 

already worse than Japan, Korea, and Singapore, before the pandemic. Its mortality 

rates deteriorated even further since 2020 and remained elevated through 2022. 
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The period life expectancy shown in Figure 7 depicts a similar impact from the 

pandemic as we observe in the age-standardized mortality rates in Figure 6.  

Figure 7: Period life expectancy of age 30 (upper panel) and age 65 (lower panel) of Singapore, 
Indonesia, Japan, Korea, Malaysia and England & Wales. 

 

 

In Figure 8 and Figure 9, we compare the period life expectancy in 2022 projected 

based on pre-COVID mortality trend from the Lee-Carter model with their actuals. 

The comparison helps evaluate the impact caused by the COVID-19 pandemic on 

period life expectancy in 2022. We also show the last time that the period life 

expectancy was below the 2022 actual. For example, in Korea, 𝑒30,2022
𝑃  is 52.4, and 

the last time 𝑒30,𝑡
𝑃  was as low as 52.4 in Korea was in 2018. The results also suggest 

that Malaysia and Indonesia each lost about 20 years’ worth of mortality 

improvement during the pandemic, although the impact for Malaysia is less severe 
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in older ages. England and Wales also lost about 10 years’ worth of mortality 

improvement.  

Figure 8: Period life expectancy 𝒆𝟑𝟎,𝟐𝟎𝟐𝟐
𝑷  pre and post pandemic trend 

 

Figure 9: Period life expectancy 𝒆𝟔𝟓,𝟐𝟎𝟐𝟐
𝑷  pre and post pandemic trend 

 
* For Indonesia, the comparison is between expected and actual 𝑒30,2020

𝑃 . 
** For Malaysia, the expected  𝑒30,2022

𝑃  is based on mean of simulated death rates. Detail of the simulation 
is discussed in Section 5. 
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3.4 Age-specific Excess Mortality due to COVID-19 Pandemic 

Figure 10 is a heatmap of percentage of change in age specific mortality rates in 

each country during the COVID-19 pandemic from the expected mortality rates 

projected based on their long-term mortality trend. In other words, the graph 

shows the excess (positive) or avoided (negative) death rates as a percentage of the 

long-term mortality rates. The percentage of changes are estimated using the two-

parameter-level model which we will discuss in detail in Section 4.  

Figure 10: Estimated excess mortality rate as a percentage of expected mortality rates based on 
long-term trend. Excess mortality is estimated as (𝑒𝑐𝑥,𝑡𝜋𝑡𝟏𝑡∈𝒯 − 1)  using the two-parameter-level 
model in Section 4.  

 

Figure 10 shows that each country in our study presents a unique trend in age-

specific mortality rates compared to their expected mortality rates: 

• Singapore: Excess mortality gets worse year over year from 2020 to 2022. 

Apart from age 30-34 and 85+, younger age groups experience worse excess 

deaths as a percentage of their normally low mortality level than older age 

groups.  

• Indonesia: Significant excess deaths are observed in all age groups in 2020.    

• Japan: For ages 45-65, the data suggest avoided deaths from 2020-2022. For 

ages above 65, excess mortality gets worse year over year from 2020 to 2022. 
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The heatmap suggests avoided deaths in ages 110+, but data are scarce in 

that age group so the result may not be reliable.  

• Korea: Excess mortality gets worse year over year from 2020 to 2022. Similar 

to Singapore, younger age groups experience worse excess deaths as a 

percentage of their normally low mortality level than older age groups. In 

ages 70+, we see avoided deaths in 2020-2021.  

• Malaysia: In 2020, ages below 45 observe noticeable avoided deaths, 

whereas for ages above 45, the impact is very muted. In 2021, there are large 

amount of excess deaths in all ages, with ages 45-74 being the worst.  

• England and Wales: There are excess deaths in all age groups from 2020 to 

2022, with 2021 being the worst year. Younger age groups tend to suffer 

worse excess deaths as a percentage of their normally low mortality level 

than older age groups.  

  



LIVING LAB REPORT  Global Asia Insurance Partnership 

30 

 

4 Estimating the Impact on Mortality during the 

COVID-19 Pandemic 

In this section, we describe the stochastic mortality model we adopt to estimate 

the long-term mortality trend and the impact on mortality from the COVID-19 

pandemic for each country of interest. We also present results from the model 

parameter estimation and discuss their implications. In addition, we illustrate how 

we use the model to estimate excess deaths.  

4.1 A Two-parameter-level Model 

We use a two-parameter-level adaptation of the multi-parameter-level model in 

Zhou & Li (2022) to fit our mortality data. More specifically, the two-parameter-level 

model assumes that 𝐷𝑥,𝑡, the number of deaths at age 𝑥 in year 𝑡, follows a Poisson 

distribution with a mean of 𝐸𝑥,𝑡𝑚𝑥,𝑡, where 𝐸𝑥,𝑡 denotes the number of exposures-

at-risk at age 𝑥 in year 𝑡.  

Let 𝒯 ≔ {𝑇1, … , 𝑇𝑘} denote the set that includes all 𝑘 years in which a pandemic takes 

place. In this study, we deem the COVID-19 pandemic to be ongoing from 2020 to 

2022 so 𝒯 ≔ {𝑇1 = 2020, 𝑇2 = 2021, 𝑇3 = 2022}. The model further assumes that the log 

central death rate is described as a stochastic process in Equation 2.  

Equation 2: The two-parameter-level model 

log 𝑚𝑥,𝑡 = 𝑎𝑥 + 𝑏𝑥𝑘𝑡 + 𝑐𝑥,𝑡π𝑡𝟏𝑡∈𝒯  

where 𝑘𝑡 follows the same random walk with drift as in Equation 1 and 𝟏𝑡∈𝒯  is an 

indicator function with value of 1 if 𝑡 ∈ 𝒯 and 0 otherwise.  

Given a set of mortality data covering ages 𝑥1, … , 𝑥𝑚  from year 𝑡1, … , 𝑡𝑛 , to ensure 

uniqueness of the parameters, we impose the following constraints.  
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∑ 𝑏𝑥

𝑥𝑚

𝑥=𝑥1

= 1,   𝑘𝑡1
= 0,   ∑ 𝑐𝑥,𝑡

𝑥𝑚

𝑥=𝑥1

= 1. 

In this two-parameter-level model, the first parameter level is the classic Lee-Carter 

model, represented by 𝑎𝑥 + 𝑏𝑥𝑘𝑡 , for modelling long-term mortality trend. The 

second parameter level in the model, represented by 𝑐𝑥,𝑡π𝑡𝟏𝑡∈𝒯, captures the short-

term shock to mortality due to the COVID-19 pandemic. Given this set-up, the 

model assumes that the long-term mortality is multiplied by a factor of 𝑒𝑐𝑥,𝑡π𝑡𝟏𝑡∈𝒯  

due to the short-term impact of the COVID-19 pandemic, and excess mortality as a 

percentage of long-term expected mortality is (𝑒𝑐𝑥,𝑡π𝑡𝟏𝑡∈𝒯 − 1) . This is how we 

quantify the excess mortality shown in Figure 10 in Section 3.4. The parameter πt 

resembles 𝑘𝑡 , and measures the overall impact of the shock in each year of the 

pandemic. The parameter 𝑐𝑥,𝑡  resembles 𝑏𝑥 , and measures different levels of 

sensitivity of each age 𝑥 to the overall shock at time 𝑡. Note that unlike 𝑏𝑥 which 

only differs by age, 𝑐𝑥,𝑡  varies both by age and time. This is a useful modelling 

feature as we observed in Figure 10 that the degree at which mortality rate 

changes during the COVID-19 pandemic indeed varies by age and time.  

In addition to the flexibility offered by the age-varying and time-varying shock 

component, this model offers several other benefits: 

• The two-parameter-level structure allows easy segregation of impact from 

long-term trend and that from short-term shock.  

• The segregation of trend and shock then enables us to easily layer on impact 

from pandemic events in forecasting future mortality.  

• The relatively parsimonious structure of the model makes estimation of 

parameters fast and reliable.  

Nonetheless the main limitation of this model is that the shock component is 

deterministic in the sense that it assumes no random variation in terms of the 

period effect or the age effect of the shock so it is not a model that can be applied 

to model any generic mortality shocks. The timing of the shock component is also 

superimposed by the indicator function 𝟏𝑡∈𝒯 , so the model is not capable of 
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automatically detecting mortality shocks.  In addition, the model does not capture 

any cohort effect, which is the mortality trend specific to a cohort in the population, 

in the long-term trend. The cohort effect in the populations that we consider may 

be material, but to quantify it together with the mortality shock during the 

pandemic using a stochastic mortality model requires more sophisticated 

methods and is beyond the scope of this study. More importantly, in this study we 

focus on the mortality impact from COVID-19 by quantifying the mortality shock as 

multipliers relative to the mortality rates according to long-term trend, and by 

comparing statistics such as life expectancies before and after the pandemic and 

between different future scenarios. In these exercises, the cohort effect of any 

existing cohorts will not affect the net pandemic impact that we analyze. Moreover, 

to identify and quantify any cohort effect that might have been caused by the 

COVID-19 pandemic, it would require more years of mortality data beyond 2022.  

4.2 Estimated parameters of the two-parameter-level model 

We fit the two-parameter-level model to the mortality data of each country we are 

interested in. The data periods we use for model estimation are listed in Table 3 

below. 

We only modelled mortality rates for age 30 and above because mortality rates for 

those under 30 could be very volatile due to small sample sizes, especially in 

countries with small population like Singapore, and could easily distort estimation 

of the model. In addition, truncating the data below age 30 does not materially 

affect the utility of this work for life insurers. 

We follow the work of Zhou & Li (2022) for parameter estimation. We treat the 

model as a Generalized Linear Mixture Model (GLMM) and estimate the parameters 

by maximizing its penalized quasi-likelihood (PQL) of the model. We chose this 

estimation method over the two-stage maximum likelihood estimation method 

commonly used in estimating parameters in Lee-Carter model as the PQL 

estimation method ensures the impact from mortality shocks is fully captured by 

the second parameter level 𝑐𝑥,𝑡π𝑡𝟏𝑡∈𝒯 and does not distort the estimated values of 

parameters 𝑎𝑥 , 𝑏𝑥 , and 𝑘𝑡  in the first parameter level, which the two-stage 
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maximum likelihood estimation method fails to achieve. We discuss in detail the 

PQL estimation method in Appendix B.1.  

Table 3 summarizes the pre-pandemic and pandemic data periods we use in each 

country, as well as the 𝜇  and 𝜎  estimated from the two-parameter-level model, 

which describes the random walk with drift process that 𝑘𝑡 follows. Figure 11 shows 

values of 𝑐𝑥,𝑡 and 𝜋𝑡 estimated from the two-parameter-level model.  

Table 3: Data periods and estimated 𝜇 and 𝜎 from the two-parameter-level model  

 Singapore Indonesia Japan Korea Malaysia E&W 
Pre-pandemic 
Periods 

1980 - 
2019 

1970 - 
2019 

1970 -
2019 

1983 -
2019 

1970 -
2019 

1970 -
2019 

Pandemic 
Periods (𝒯) 

2020 - 
2022 

2020 2020 -
2022 

2020 -
2022 

2020 -
2021 

2020 -
2022 

𝜇 -0.331 -0.149 -0.275 -0.496 -0.179 -0.189 
𝜎 0.184 0.235 0.253 0.221 0.150 0.226 

The estimated values of 𝑎𝑥 and 𝑏𝑥 from the two-parameter-level model with data 

up to 2022 are very close to those estimated via the Lee-Carter model with data up 

to 2019 (see Section 2.3.2), as we expect. The estimated values of 𝑘𝑡 from the two-

parameter-level model with data up to 2022 also closely follow the trend of 𝑘𝑡 

estimated via the Lee-Carter model with data up to 2019. 

A few observations can be drawn from the parameters estimated: 

• The estimated values of 𝜋𝑡  are indicative of the magnitude of the overall 

mortality shock in the COVID-era while the values of 𝑐𝑥,𝑡  illustrate the 

variation in mortality shock in each age group. The estimated values of 𝜋𝑡 

and 𝑐𝑥,𝑡 can be positive or negative. The complete impact from the COVID-

19 mortality shock is quantified by multiplying 𝜋𝑡 and 𝑐𝑥,𝑡. Thus, the direction 

of age-specific mortality shock should not be interpreted from the sign of 𝜋𝑡 

or 𝑐𝑥,𝑡 on a standalone basis, but rather be from the multiple of 𝜋𝑡 and 𝑐𝑥,𝑡, 

which can be observed from Figure 11. By the same token, the 𝑐𝑥,𝑡 ’s 

associated with a small value of 𝜋𝑡 are less meaningful in interpreting the 

results.   
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Figure 11: 𝑐𝑥,𝑡 and 𝜋𝑡 estimated with post-COVID data and the two-parameter-level model*  

  

  

  

*  In the plot for Japan, π2021 is scaled up by a factor of 10 and 𝑐𝑥,2021’s are scaled down by a factor of 0.1 so that they 
can fit the plot with other parameters.  

• Since a constraint of ∑ 𝑐𝑥,𝑡
𝑥𝑚
𝑥=𝑥1

= 1 is imposed on the estimated parameters, 

the value of 𝑐𝑥,𝑡  provides indication of the degree of variation in the age 

specific sensitivity to overall mortality impact related to COVID-19. For 

example, in Malaysia there is little variation in the age-specific mortality 

impact relative to the overall mortality shock in 2021, but in 2020, the 

variation in sensitivity across different age groups is much larger. It is 

interesting to note that large variation in 𝑐𝑥,𝑡 is typically associated with very 

small value of π𝑡 , for example in Malaysia in 2020 and in Japan in 2021. When 

overall impact of the mortality shock is very small, estimating values of 𝑐𝑥,𝑡 
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subject to the constraint of  ∑ 𝑐𝑥,𝑡
𝑥𝑚
𝑥=𝑥1

= 1 can cause significant noise in the 

values of 𝑐𝑥,𝑡.  

4.3 Excess Mortality due to COVID-19 Pandemic 

Up to this point the focus of this study has been the long-term impact on mortality 

due to the COVID-19 pandemic. Nevertheless, a statistic of great interest to news 

media and the general public during the COVID-19 pandemic is the so called 

“excess mortality”. Excess mortality is defined as “the difference in the total number 

of deaths in a crisis compared to those expected under normal conditions”4. It can 

be calculated according to Equation 3. 

Equation 3: Excess Deaths 

𝐸𝑥𝑐𝑒𝑠𝑠 𝑑𝑒𝑎𝑡ℎ𝑠 =  𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑑𝑒𝑎𝑡ℎ𝑠 –  𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑒𝑎𝑡ℎ𝑠 

A retrospective evaluation of excess deaths during the COVID-19 pandemic period 

allows us to learn about the true impact of the pandemic in each country in the 

past three years. The key to estimating excess deaths is the estimation of expected 

deaths. However, the question of “How many deaths should we expect to have 

occurred in the last three years in absence of the pandemic?” is a rather subjective 

one and is one that we would never find an answer to in the real world. The 

subjectivity in the number expected deaths can cause variation in the number of 

excess. 

We propose to estimate expected deaths using the Lee-Carter model fitted with 

recent data. In this section, we explain the rationale behind our proposal, present 

some empirical evidence supporting it and discuss how we can use the two-

parameter-level model to estimate excess deaths under the assumption that the 

expected deaths follow the Lee-Carter model.  

 
4 https://www.who.int/data/stories/the-true-death-toll-of-covid-19-estimating-global-
excess-mortality 
 

https://www.who.int/data/stories/the-true-death-toll-of-covid-19-estimating-global-excess-mortality
https://www.who.int/data/stories/the-true-death-toll-of-covid-19-estimating-global-excess-mortality
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4.3.1 Estimating expected deaths 

We choose to use the Lee-Carter model to estimate expected deaths as it captures 

the dynamics of long-term mortality improvement and is simple to implement. We 

estimate parameters for projecting expected mortality rates using mortality data 

from 2010 to 2019 because it reflects the latest trend in mortality. Moreover, we do 

not require long data periods to reflect the long-term volatility in mortality rates as 

we are only making short-term forecast of estimating excess deaths in 2020 – 2022. 

There are many alternative methods to estimate expected deaths for the purpose 

of quantifying excess deaths. Identifying the best method among them is beyond 

the scope of this paper. Nonetheless, we will present some empirical evidence to 

illustrate the benefit of using our proposed method. 

To estimate expected death rates, in addition to using mortality rates predicted by 

the Lee-Carter model fitted with the previous 10 years’ experience, we consider the 

following three alternatives: 

1. Moving average of previous 5 years of mortality rates 

2. Last year’s mortality rates 

3. Mortality rates predicted by the Lee-Carter model which is fitted to the 

previous 20 years’ experience 

The use of simple statistics as expected mortality, such as those in the first and 

second alternative, may seem naïve but is in fact prevalent in many published 

statistics. For example, the Office for National Statistics in U.K. uses the moving 

average of previous 5 years as the expected mortality rates5, while the Ministry of 

Health in Singapore use the 2019 mortality rates, i.e. last year’s mortality rates, as 

the expected rates (Ministry of Health Singapore, 2022).  

 
5https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/dea
ths/datasets/excessdeathsinenglandandwales 
 

https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/excessdeathsinenglandandwales
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/excessdeathsinenglandandwales
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Figure 12 shows the actual mortality rates of age 70-74 in Japan from 1970 to 2019 

and compares them with the expected mortality rates calculated with the 4 

different methods discussed above. We chose to use the mortality experience for 

age 70-74 in Japan from 1970 to 2019 as an example because there are sufficient 

death samples in this group so the data tend to be more stable.  

Figure 12: Actual vs. expected death rate. Japan, age 70-74 

 

We calculate the average relative error from the actual mortality rates, which is 

measured as  

1

𝑛
∑

|𝑚𝑥,𝑡
expected

− 𝑚𝑥,𝑡
actual|

𝑚𝑥,𝑡
actual

𝑡𝑛

𝑡=𝑡1

 

of the four estimates of expected mortality rate in the age 70-74 Japan data from 

1970-1989, 1990-2019, and 1970 to 2019. The results are summarized in Table 4. 

Table 4: Average relative error of expected mortality rates from actual death rates. Japan data for 
age 70-74 from 1970 to 2019. 

Data 
period 

5-year moving 
average 

Last year’s 
rate 

Lee-Carter 
20-year data 

Lee-Carter 
10-year data 

1970-1989 10.9% 3.7% 2.9% 2.1% 
1990-2019 5.8% 2.3% 3.6% 2.4% 
1970-2019 7.8% 2.9% 3.3% 2.2% 
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Table 4 and Figure 12 have shown that the mortality rates predicted by the Lee-

Carter model fitted with previous 10 years’ data have the best performance in 

forecasting the actual mortality rates based on the historical data we consider. The 

performance of using last year’s mortality rates as expected comes a close second, 

while using the 5-year moving average performs far worse than the other three 

methods. These results are as expected. Using last year’s mortality rate as expected 

mortality can reflect the latest mortality trend, but it is a volatile measure as any 

volatility in mortality would result in volatility of the expected mortality rate for next 

year.  The 5-year moving average method ignores approximately 3 years’ worth of 

mortality improvement in the expected mortality, which has significant impact 

particularly in periods where fast mortality improvement is observed. This explains 

why the deviation from the actual of using the 5-year moving average is the largest 

during 1970-1989 and has halved during 1990-2019. This result highlights the 

importance of properly reflecting mortality improvement in the expected mortality 

calculation.  

4.3.2 Estimate excess mortality using various methods 

In this section, we demonstrate that the two-parameter-level model can also be 

used to quantify annual excess deaths during the COVID-19 pandemic by 

assuming expected deaths follow the Lee-Carter model fitted with data from 2010 

to 2019. We then compare excess deaths estimated by the two-parameter-level 

model with estimates from several widely cited publications.  

Recall in the two-parameter-level model in Equation 2, log 𝑚𝑥,𝑡 = 𝑎𝑥 + 𝑏𝑥𝑘𝑡 +

𝑐𝑥,𝑡π𝑡𝟏𝑡∈𝒯. By definition, 𝑐𝑥,𝑡π𝑡𝟏𝑡∈𝒯 represents the excess log death rates related to 

the COVID-19 pandemic while 𝑎𝑥 + 𝑏𝑥𝑘𝑡 represents the long-term mortality trend 

we should expect under normal condition. Therefore, we can estimate the excess 

deaths related to COVID-19 as 𝐸𝑥,𝑡𝑒𝑎𝑥+𝑏𝑥𝑘𝑡(𝑒𝑐𝑥,𝑡π𝑡𝟏𝑡∈𝒯 − 1). Since we assume expected 

deaths follow the Lee-Carter model fitted with data from 2010 to 2019, we fit the 

two-parameter-model with data since 2010 and use the estimated parameters to 

quantify excess deaths. 
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It is worth noting that the proposed estimation method for excess deaths is 

suitable for reviewing the overall mortality impact of the pandemic each year. 

However, if the focus is on smaller time intervals such as daily, weekly, or monthly 

excess deaths, which is the case in many other studies, a more complex model is 

required to reflect the seasonality in deaths within a given year. 

The estimates included in the comparison are: 

• Zhou & Li model, which is the two-parameter-level model proposed in Zhou 

& Li (2022), using long-term trend from 2010 and onwards 

• WHO: Global excess deaths associated with COVID-19 (modelled estimates) 

(https://www.who.int/data/sets/global-excess-deaths-associated-with-

covid-19-modelled-estimates) 

• The Economist: daily estimate of excess deaths around the world 

(https://www.economist.com/graphic-detail/coronavirus-excess-deaths-

tracker) 

• Lancet paper: “Estimating Excess Mortality Due to the COVID-19 Pandemic: 

A Systematic Analysis of COVID-19-Related Mortality, 2020–21.” The Lancet 

(Wang et al., 2022) 

Appendix C describes the methods used in estimates published by WHO, The 

Economist and Lancet by Wang et al. (2022). 

Figure 13 shows the estimated excess deaths in 2020, 2021 and 2022 of the six 

countries we consider in this study, where data are available. The numbers are 

shown in thousands. Note that the Lancet paper sums the excess deaths in 2020-

2021 in one number and we show it as the 2021 statistic.  

We make several observations about the results in Figure 13: 

• There is significant variation in the excess deaths for the same time period 

estimated by different methods in all countries. Note that in Korea, the WHO 

and Lancet paper only report estimates up to 2021 so the 2022 estimates in 

these models are blank.   

https://www.who.int/data/sets/global-excess-deaths-associated-with-covid-19-modelled-estimates
https://www.who.int/data/sets/global-excess-deaths-associated-with-covid-19-modelled-estimates
https://www.economist.com/graphic-detail/coronavirus-excess-deaths-tracker
https://www.economist.com/graphic-detail/coronavirus-excess-deaths-tracker
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Figure 13: Excess deaths in Singapore, Indonesia, Japan, Korea, Malaysia and England and Wales 
in 2019-2022. Estimates from difference sources. 

  

  

  

• Results produced by the Zhou & Li model are close to the WHO estimates in 

most cases. This is as expected since the WHO model also captures the 

secular time trends and the age pattern in mortality that the Zhou & Li 

model reflects.  

• Results from the Lancet paper differ from the other models in many cases, 

possibly due to the fact that the ensemble model used in this paper does 

not explicitly adjust for age pattern in mortality rates.  
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• In countries where the most recent data are not yet available, the Economist 

estimates an alarming number of excess deaths in 2021 and 2022 in 

Indonesia, and a moderate number of excess deaths in 2022 in Malaysia. The 

overall magnitude of excess deaths estimated by the Economist for Malaysia 

in 2022 is consistent with the 2022 total death count reported by the 

Department of Statistics Malaysia.     

Furthermore, in Figure 14 we plot the average annual excess deaths per 1,000 

population in these countries based on the Zhou & Li model, against the 

Healthcare Access and Quality Index 2015 (Barber et al., 2017). The plot shows an 

almost linear negative correlation between excess deaths and healthcare 

accessibility and quality in all countries except England and Wales. A more 

thorough study of factors impacting excess deaths during the pandemic in all 

countries will be explored in future work.  

Figure 14: Average annual excess deaths per 1,000 population and healthcare access and quality 
index in each country. 
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5 Long-term Mortality Impact from COVID-19 

pandemic 

5.1 Forecasting the long-term trend of mortality improvement 

To evaluate the long-term mortality impact from the COVID-19 pandemic, we first 

need a reasonable forecast of the long-term mortality improvement trend in 

absence of a pandemic, which is dictated by parameter 𝜇, the drift of the random 

walk that describes 𝑘𝑡  in the two-parameter-level model in Equation 2. More 

specifically, we need to decide on the value of the drift term 𝜇 in the random walk 

for future projection. This is a complex undertaking in East and Southeast Asian. 

Unlike developed countries in Europe and North America, where mortality 

experienced much improvement post World War II and has slowed down since 

1970s (United Nations, 2022b), the fast-developing economies in East and 

Southeast Asia have experienced much steeper mortality improvements in the 

past few decades. This phenomenon can be observed in the historical age-

standardized mortality rates of Japan, Korea and Singapore in Figure 1. Compared 

to England and Wales, the age-standardized mortality rates of Japan, Korea and 

Singapore have been declining at a much faster pace. Japan’s mortality rates have 

been running approximately in parallel to England and Wales’s rates, but the rate 

of improvement in Korea and Singapore did not slow down until 2010-2015. 

Therefore, it is unreasonable to assume that mortality improvement in fast-

developing economies in Asia will continue to be at the same speed as it has been 

for the past four to five decades, because the room for further improvement in 

standard of living and access and quality of health care,  which are the main factors 

impacting mortality improvement (Purushotham et al., 2011), is gradually 

contracting as some of these countries become developed economically.  

A study by Wilmoth (1998) examined this very issue for Japan. The author made 

forecast of life expectancy based on two hypothetical scenarios: one where the 

exceptionally rapid speed of improvement in life expectancy observed from post-

war to the 1990s continues and the other where the speed of improvement in life 
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expectancy converges to the long-term trend of Sweden, a country already 

achieved the so-called “avant-garde” status in mortality improvement. An “avant-

garde” country in this sense is defined as a country “whose overall level of mortality 

equals the minimum achieved at that time by any national population”. The author 

suggests that the second scenario is more likely given the few most recent data 

points available at the time.  

In this study, we leverage off the study by Wilmoth (1998) and assume that Japan 

is now the “avant-garde” country in East and Southeast Asia.  In addition, we make 

the following assumptions about the long-term trend of mortality improvement in 

absence of any pandemic impact in the countries we study: 

• For Japan, Korea, and Singapore, the long-term trend will follow the trend in 

Japan since 1990, which is what we consider as the “avant-garde” long-term 

trend in Asia.  

• For England and Wales, Indonesia and Malaysia, the long-term trend will 

follow each country’s own trend since 1970.  

The rationale for making such assumptions are as follows. For Japan, we assume it 

has achieved “avant-garde” status since 1990. This can now be confirmed by actual 

experience data shown in Figure 15. The period life expectancy at birth in Japan is 

approximately parallel to that of Sweden since 1990.  

For Korea and Singapore, given their rapid mortality improvement in recent 

decades and the fact that their age-standardized mortality rates have reached 

Japan’s level before the COVID-19 pandemic, it is reasonable to assume that their 

trend in mortality improvement will converge to that of Japan. Figure 16 shows the 

comparison of 𝑒30,𝑡
𝑃  calculated based on actual mortality rates versus mortality 

rates following the Japan post-1990 trend in Japan, Korea, and Singapore. For 

Korea and Singapore, we only compared data points in the 5 years preceding the 

pandemic since we only expect their experience to start converging to the “avant-

garde” long-term trend in the most recent period. Figure 16 shows that the actual 

experience is better than that projected using the “avant-garde” long-term trend 

by a very small margin. Despite the small variation, we argue that it is more sensible 
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to assume the “avant-garde” long-term trend in our projection compared to the 

long-term trend implied by their own experience in the past few decades. 

Figure 15: Period life expectancy at birth (data Source: Human Mortality Database) 

 
 

Figure 16: Life expectancy of age 30: Actual and projected using Japan's long-term trend since 1990 
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For Indonesia and Malaysia, their rate of mortality improvement has been much 

slower than those observed in countries with faster economic development, and 

their absolute level of mortality is still much higher than the more developed 

countries such as Singapore, Japan and Korea. Given an “avant-garde” country is 

defined as a country whose overall level of mortality equals the minimum achieved 

at that time by any national population (Wilmoth 1998), we argue that Indonesia 

and Malaysia have not reached “avant-garde” status in terms of mortality 

improvement, and there is still much room for their mortality to further improve. 

Thus, it is reasonable to assume their current trend will continue.  

For England and Wales, its mortality experience is rather stable and the trend in 

mortality improvement since 1970 fits the profile of an “avant-garde” country so we 

assume such trend will persist.  

5.2 Simulation study 

Given the stochastic nature of mortality rates and the uncertainty around how the 

mortality experience will evolve as we enter the endemic phase of COVID-19, we 

utilize Monte Carlo simulation to forecast the future mortality rates under different 

scenarios for all countries except Indonesia. Since we only have 2020 data for 

Indonesia, we conclude it is not credible to make forecast of future mortality in this 

country based on one-year worth of pandemic data.  

5.2.1 Simulation model  

The stochastic mortality model we consider for the Monte Carlo simulation is also 

proposed in Zhou & Li (2022). It is an extension of the two-parameter-level model 

described in Section 4.1, with additional parameters to reflect the arrival of new 

pandemic in the future. 
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Equation 4: Simulation model in general form 

log 𝑚𝑥,𝑡 = 𝑎𝑥 + 𝑏𝑥𝑘𝑡 + ∑ (𝑐𝑥,𝑡
(𝑖)

𝜋𝑡
(𝑖)

𝟏
𝑇1

(𝑖)
≤𝑡≤𝑇𝑘

(𝑖) + 𝑐𝑥,𝑇𝑘

(𝑖)
𝜋𝑇𝑘

(𝑖)
γ𝑔(𝑡,𝑇𝑘

(𝑖)
)𝟏

𝑡>𝑇𝑘
(𝑖))

𝑖

 

where 𝟏𝑡  =  {
1 with probability 𝑝
0                 otherwise

  for any 𝑡 > 𝑇𝑘
(1)

. 

The parameters in Equation 4 are defined as follows: 

• 𝑎𝑥, 𝑏𝑥, and 𝑘𝑡 have the same definition as in Equation 2. 

• 𝑐𝑥,𝑡
(𝑖)  represents the sensitivity of age 𝑥  to the overall shock at time 𝑡  in 

pandemic 𝑖. 

• 𝜋𝑡
(𝑖) reflects the overall impact of the mortality shock in year 𝑡 of pandemic 𝑖.  

• For any pandemic 𝑖 , 𝑐𝑥,𝑡
(𝑖)

𝜋𝑡
(𝑖)

𝟏
𝑇1

(𝑖)
≤𝑡≤𝑇𝑘

(𝑖)  describes the mortality shock in the 

pandemic phase whereas 𝑐𝑥,𝑇𝑘

(𝑖)
𝜋𝑇𝑘

(𝑖)
γ𝑔(𝑡,𝑇𝑘

(𝑖)
)𝟏

𝑡>𝑇𝑘
(𝑖) describes the mortality shock 

in the endemic phase, in other words, how the shocked mortality reverses 

back to normal, if at all.  

• 𝛾 describes the speed of recovery in mortality to get parallel to its long-term 

pandemic-free trend again. 

• 𝑔(⋅) is a function of 𝑡 and 𝑇𝑘
(𝑖). It takes one of two forms: 𝑔 (𝑡, 𝑇𝑘

(𝑖)
)  =  𝑡 −  𝑇𝑘

(𝑖) 

or 𝑔 (𝑡, 𝑇𝑘
(𝑖)

)  = 𝑚𝑖𝑛(𝑡 − 𝑇𝑘, 4).  

This new model can capture the cumulative impact from multiple pandemic 

events. The added feature allows us to model the arrival of new pandemics in the 

future. Additionally, we assume the COVID-19 pandemic between 2019-2022 is 

pandemic 𝑖 = 1 . For 𝑖 >  1 , the new pandemic arrives according to a Bernoulli 

process with a probability of 𝑝 in any given year.   

5.2.2 Simulation scenarios 

We forecast future mortality in 6 scenarios. These scenarios are designed to reflect 

a wide range of trajectories we could expect in future mortality rates with the risk 

of pandemics taken into consideration, but by no means is this an exhaustive list 
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of how the future mortality may evolve, nor does it represent our expectation of 

the most likely scenario to occur. Forecasting the most likely trajectory of how 

mortality under the impact of COVID-19 will evolve requires more data than what 

is currently available and is beyond the scope of this paper.  

The 6 scenarios we consider are described as follows: 

• Scenario 1:  𝑖 =  1, 𝑝 =  0, 𝛾 =  0, 𝑔 (𝑡, 𝑇𝑘
(𝑖)

)  =  𝑡 − 𝑇𝑘
(𝑖)

. 

The scenario assumes the most recent mortality shock observed in the 

COVID-19 pandemic disappears completely and immediately, with a full 

reversion to the pre-pandemic trend. This is the most optimistic scenario. It 

shows what the mortality rates would have been with no remaining impact 

after the pandemic years. 

 

• Scenario 2: 𝑖 =  1, 𝑝 =  0, 𝛾 =  1, 𝑔 (𝑡, 𝑇𝑘
(𝑖)

)  =  𝑡 − 𝑇𝑘
(𝑖)

. 

The scenario assumes the most recent mortality shock observed in the 

COVID-19 pandemic continues indefinitely and no new pandemic occurs. 

This is the most pessimistic scenario and is unlikely to materialize in the real 

world. However, it provides an upper bound of what the mortality rates 

would be in the coming years given the impact of the COVID-19 pandemic. 

 

• Scenario 3: 𝑖 =  1, 𝑝 =  0,   0 <  γ <  1, 𝑔 (𝑡, 𝑇𝑘
(𝑖)

)  =  𝑡 −  𝑇𝑘
(𝑖)

. 

The scenario assumes the most recent mortality shock observed in the 

COVID-19 pandemic subsides indefinitely according to a power function, 

and no new pandemic occurs. We use γ =  0.85  in the simulation results 

shown in Section 5.2.4, which implies that the mortality shock in the log 

death rates log 𝑚𝑥,𝑡 will be reduced to about 50% by year 4, 10% by year 14 

and 1% by year 28. Figure 17 illustrates values of the power function in 

Scenario 3 and 4 with γ =  0.85.  

 

This is a more reasonable outlook for mortality rates. It reflects a situation of 

gradual recovery in mortality improvement, in which the virus becomes less 



LIVING LAB REPORT  Global Asia Insurance Partnership 

48 

 

fatal to human being, for example with better therapeutics, more effective 

vaccines, built-up herd immunity in the population, and more efficient 

health care system. In this model, the speed of recovery in mortality 

improvement is dictated by the parameter 𝛾 , and can vary substantially 

depending on the value of 𝛾. 

Figure 17: Illustration of power function 𝛾𝑡 with 𝛾 =  0.85. 

 

• Scenario 4: 𝑖 =  1, 𝑝 =  0,   0 <  γ <  1, 𝑔 (𝑡, 𝑇𝑘
(𝑖)

)  = 𝑚𝑖𝑛(𝑡 − 𝑇𝑘, 4). 

The scenario assumes the most recent mortality shock observed in the 

COVID-19 pandemic subsides only for 4 years according to a power function, 

and no new pandemic occurs. Value of the power function with γ =  0.85 is 

again illustrated in Figure 17. This is a more adverse scenario than Scenario 

3. It leaves a permanent gap in mortality level from what it would have been 

without the pandemic. The size of the gap depends on how much the 

mortality can recover in 4 years after the pandemic, which is again dictated 

by the parameter 𝛾. The choice of a normalizing period of 4 years is rather 

arbitrary. Since the pandemic has already persisted for 3 years, we assume 

the reversion back to the pre-pandemic trend of mortality improvement will 

take slightly longer and pause after 4 years. This assumption can be revisited 

once more data become available.  
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• Scenario 5: 𝑖  ≥ 1, 𝑝 =  0.01, 0 <  γ <  1, 𝑔 (𝑡, 𝑇𝑘
(𝑖)

)  =  𝑡 −  𝑇𝑘
(𝑖)

. 

The scenario assumes the most recent mortality shock observed in the 

COVID-19 pandemic subsides indefinitely according to a power function, 

and a new pandemic occurs with a probability of 𝑝 each year. Note that we 

assume it is possible for new pandemic to arrive before the previous one 

runs its course. The impact from each pandemic will be added to impact 

from the previous pandemic(s) in this case. Furthermore, we assume that 

once a new pandemic occurs, its impact on mortality is of the same 

magnitude and lasts for the same duration as the COVID-19 pandemic.  This 

is a very strong assumption but without the support of more data and 

evidence, it is not worse than any other assumption.  

 

• Scenario 6: 𝑖  ≥ 1, 𝑝 =  0.05, 0 <  γ <  1, 𝑔 (𝑡, 𝑇𝑘
(𝑖)

)  =  𝑡 −  𝑇𝑘
(𝑖)

. 

This scenario is identical to Scenario 5 except the new pandemic will be five 

times as likely to occur in any given year as in Scenario 5.  

5.2.3 Simulation parameters 

We use parameters estimated in Section 4.2 for each country in this simulation 

study, with the exception of 𝜇  for Japan, Korea and Singapore. As discussed in 

Section 5.1, for these three countries, we assume 𝜇 =  −0.203 , which is the 𝜇 

estimated from the two-parameter-model using the Japan data from 1990-2021. 

Note this 𝜇 suggests a slower rate of mortality improvement than what is shown in 

Table 3 in Section 4.2 due to the different data periods used in estimation. This is to 

avoid being over-optimistic about the rate of mortality improvement in future.  

Furthermore, the simulation requires estimated values of parameters 𝑐𝑥,𝑡  and π𝑡 

for 𝑡 = 𝑇1, … , 𝑇𝑘 , where 𝑇1 = 2020, 𝑇2 = 2021, 𝑇3 = 𝑇𝑘 = 2022 .  For Malaysia, since we 

only have data up to 2021, we assume that 𝑐𝑥,2022 = 𝑐𝑥,2021, and 𝜋2022 = 0.8 × 𝜋2021. 

The multiplier of 0.8 is estimated based on the total deaths count reported for 2021 

and 2022 in Malaysia by their Department of Statistics.  
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As discussed in Section 5.2.2, we choose γ =  0.85 in the simulation. This is a rather 

conservative assumption. However, by examining the data from England and 

Wales, where the most amount of mortality impact is available in the countries we 

consider, a factor of γ =  0.85 is justifiable as the England and Wales data suggest 

only a very small improvement in the mortality shock in 2022 compared to 2021. 

We choose to estimate γ based on the experience of England and Wales because 

among the countries we study, only England and Wales have three years’ 

experience with large mortality impact during the pandemic, from which we can 

observe how mortality evolve year over year after the first major wave of deaths.  

For parameter 𝑝 which governs how fast new pandemics arrive in Scenario 5 and 6 

outlined in Section 5.2.2, we set 𝑝 =  0.01 in Scenario 5 and 𝑝 =  0.05 in scenario 6. In 

scenario 5, 𝑝 =  0.01  corresponds to the assumption that a pandemic of similar 

scale to COVID-19 would occur at a rate of 1 in 100 years. This is consistent with the 

fact that the last pandemic with similar impact is the 1918 influenza pandemic, 101 

years prior to the COVID-19 pandemic. In scenario 6, 𝑝 =  0.05 corresponds to the 

assumption that a pandemic of similar scale to COVID-19 would occur at a rate of 1 

in 20 years. This is a more aggressive assumption but considering it has been less 

than 20 years between the SARS outbreak in 2003 and the COVID-19 pandemic in 

2019, the assumption is still plausible. 

5.2.4 Simulation results 

In each of the five countries we consider for forecasting via simulation and for each 

scenario outlined in Section 5.2.2, we conduct 𝑁 =  10,000 Monte Carlo simulations 

of the log central death rates log 𝑚𝑥,𝑡 for  𝑡 =  2023, … , 2120, 𝑥 corresponds to each 

quinquennial age group above age 30 and up to the maximum age in the mortality 

data. We then interpolate 𝑚𝑥,𝑡 = 𝑒𝑥𝑝(log 𝑚𝑥,𝑡)  between age groups, extrapolate 

them to a limiting age of ω =  120 , and convert each 𝑚𝑥,𝑡  into 𝑞𝑥,𝑡 , which is the 

probability that an age 𝑥 in year 𝑡 dies in the next year. After that, we use 𝑞𝑥,𝑡  to 

calculate the indices we are interested in. The algorithm for simulating log 𝑚𝑥,𝑡 , 

converting them to 𝑞𝑥,𝑡 and calculating indices are illustrated in Appendix B.2. 
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The indices we are interested in are:  

• Period life expectancy of an age 30 and age 65, respectively: 𝑒30,𝑡
𝑃  and 𝑒65,𝑡

𝑃  for 

𝑡 = 2019, … , 2052. 

• Cohort life expectancy of an age 30 and age 65 in year 𝑡, respectively: 𝑒30,𝑡
𝐶  

and 𝑒65,𝑡
𝐶  for 𝑡 = 2022, 2030. 

We choose to show life expectancy of an age 30 as it reflects the mortality of adult 

ages; we choose to show life expectancy of an age 65 to illustrate impact on the 

retired population.  

Note that in the Monte Carlo simulation, each scenario for each country uses the 

same sequence of random numbers. This is to avoid additional variance in results 

across scenarios and countries that could arise purely due to the different random 

numbers used in simulation.  

5.2.4.1 Period life expectancy 

Figure 18 shows a 20-year projection of the mean of the simulated period life 

expectancy at age 30 and age 65, respectively, in the 6 simulation scenarios 

described in Section 5.2.2 for Singapore. The figure illustrates how life expectancy 

evolves in the next 20 years in each scenario so that we can build a concrete idea 

of the impact on life expectancy in different scenarios on an expected value basis. 

We only show the data for Singapore since all countries share similar shape of the 

trajectory of life expectancy in each scenario, with only the absolute level of life 

expectancy and the deviation between scenarios differ by country. 

In Figure 19 and Figure 20, we also show the boxplot of simulated period life 

expectancies of an age 30 and age 65, respectively, in year 2032, of all 5 countries 

in all 6 scenarios. The boxplot provides a fuller picture of the range of outcomes in 

each of the simulated scenarios.  

Figure 18: Projected period life expectancy of age 30, 𝒆𝟑𝟎,𝒕
𝑷 , (left panel) and age 65, 𝒆𝟑𝟎,𝒕

𝑷 , (right panel) 
in Singapore. Data shown are the mean life expectancy in the Monte Carlo simulation. 
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Figure 19: Boxplot of period life expectancy 𝑒30,2032
𝑃  
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Figure 20: Boxplot of period life expectancy 𝑒65,2032
𝑃  

 

Overall, the period life expectancies at both age 30 and age 65 observe similar 

pattern across different scenarios in any given country. We make the following 

remark about these results. 

• In any given country, the deviation in life expectancy between different 

scenarios are consistent with the country’s magnitude of mortality shock 

during the pandemic.  

• In Scenario 5 and 6, even though their mean life expectancies are both very 

close to that of Scenario 3, the simulation result shows significant left tail risk 

(lower life expectancy) in these two scenarios. The left tail risk is even more 

pronounced in Scenario 6, which is consistent with its assumption of higher 

probability of new pandemic arrival.  

• In any given country, 𝑒65,𝑡
𝑃  tends to have a larger variance than 𝑒30,𝑡

𝑃 . This is as 

expected because for 𝑒30,𝑡
𝑃 , with a longer projection horizon, the drift term μ 
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of the random walk process that describes mortality improvement 

dominates the outcome of projection more so there is less random variation.  

• In any given country, the first and third quartile of outcome in Scenario 3 to 

6, represented by the upper and lower edge of the box, are within the data 

range of Scenario 1, the scenario representing pre-pandemic mortality level. 

This suggests that Scenario 3 to 6 are indeed possible scenarios given the 

long-term historical volatility. Nonetheless, this should not be interpreted as 

reason not to be concerned about the impact from these scenarios since the 

left tail risks shown in Scenario 3 to 6 are substantial.    

Figure 21 and Figure 22 illustrate how many years it will take for the period life 

expectancy to get back to the 2019 level in each country under each of the 6 

scenarios. The variation in results among different scenarios in each country is 

commensurate with the set-up of the scenario and the mortality impact 

experienced in each country. It takes Malaysia particularly long to reverse to pre-

pandemic level due to its bigger mortality impact during the pandemic and its 

slow speed of mortality improvement in the long-term mortality trend.  

Figure 21: Year post COVID-19 pandemic in which 𝒆𝟑𝟎,𝒕
𝑷  gets back to 𝒆𝟑𝟎,𝟐𝟎𝟏𝟗

𝑷  
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Figure 22: Year post COVID-19 pandemic in which 𝒆𝟔𝟓,𝒕
𝑷  gets back to 𝒆𝟔𝟓,𝟐𝟎𝟏𝟗

𝑷  

 

5.2.4.2 Cohort life expectancy 

In Figure 23 to Figure 26, we plot boxplots for each of the simulated cohort life 

expectancy of an age 30 in 2022 and 2032, and of an age 65 in 2022 and 2032.  

We make the following observations from these boxplots: 

• There is much smaller variation in cohort life expectancy among different 

scenarios in all countries, compared to the period life expectancy because 

the impact of the pandemic will be diluted by future mortality 

improvement (OECD, 2023) 

• There is higher uncertainty around cohort life expectancy compared to 

period life expectancy because it accumulates the stochasticity in mortality 

rates over a much longer period, until the cohort reaches limiting age. It is 

also the reason why 𝒆𝟑𝟎,𝑡
𝑪  has larger variance than 𝒆𝟔𝟓,𝑡

𝑪 . 

• In all scenarios, an age 30 in Japan in 2022 is expected to live beyond age 90, 

with Singapore and Korea quickly catching up in 2032. This signals 

substantial longevity risk in these countries in the future.  
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Figure 23: Cohort life expectancy 𝒆𝟑𝟎,𝟐𝟎𝟐𝟐
𝑪  

 

 

Figure 24: Cohort life expectancy 𝒆𝟑𝟎,𝟐𝟎𝟑𝟐
𝑪  
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Figure 25: Cohort life expectancy 𝒆𝟔𝟓,𝟐𝟎𝟐𝟐
𝑪  

 

 

Figure 26: Cohort life expectancy 𝒆𝟔𝟓,𝟐𝟎𝟑𝟐
𝑪  
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6 Implications and Recommendations 

In this section, we present our recommendations to life insurance practitioners and 

policymakers based on the analysis and observations from this study. 

6.1 Mortality experience monitoring and data collection 

We have demonstrated in this study great variation in mortality experience among 

the six countries we considered in terms of 

• Long-term mortality experience such as  

o Overall level of mortality rates, which is the value of mortality rates 

o Level of mortality improvement, which is the first derivative of 

mortality rates with respect to time 𝑡 

o Trend in the level of mortality improvement, which is the second 

derivative of mortality rates with respect to time 𝑡 

 

• Short-term mortality shock such as 

o Magnitude and direction of mortality shock by time during the 

COVID-19 pandemic 

o Magnitude and direction of mortality shock by age group during the 

COVID-19 pandemic 

Unlike a long-developed economy like England and Wales, the characteristics of 

long-term mortality experience listed above can change very rapidly in the 

developing or recently developed countries in Asia. Thus, it is crucial to closely 

monitor the mortality experience in this region, promptly quantify the impact of 

recent development and make changes to business practice, strategies, and public 

policies accordingly.  

With all the machine learning technologies available today, it would be very 

beneficial for insurance companies and governments to build infrastructure that 

can facilitate conversion of historical data into standardized format and timely 
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collection of new mortality data with high degree of granularity. This will enable 

timely and insightful data analysis with the help of machine learning techniques. 

One of the challenges we faced in this study is the lack of up-to-date data that 

reflects the latest trend in mortality during the COVID-19 pandemic.  

One unique feature of East and Southeast Asia is that the life insurance industry 

only starts to take off in recent decades in many regions. Building and utilizing 

proper data infrastructure with the latest technology from this early stage could 

benefit life insurers in these new markets tremendously in the long run.  

In addition to timely collection of data, we also encourage industry participants to 

be more open minded about sharing their experience data with organizations that 

have research capacity such as the Global-Asia Insurance Partnership and 

academia. A large, robust, suitably de-identified and frequently updated collective 

dataset could provide valuable insight for all participants in the life insurance 

industry. Admittedly data security and data privacy are of paramount importance, 

but proper data governance practice should reduce the risk of data breach to a 

minimum.  

6.2 Mortality modelling 

In terms of modelling the impact of mortality shock from the COVID-19 pandemic, 

the two-parameter-level model presented in this study is a useful tool for this 

purpose. Despite some of its limitations discussed in Section 4.1, the model is quite 

powerful in accurately capturing the age and period specific impact of the 

mortality shock, and its results are easy to interpret. The estimation of model 

parameters is also straight-forward to implement.  

Insurance companies and pension schemes can use the two-parameter-model to 

evaluate the mortality impact of the pandemic in their existing portfolio. They can 

also use extensions of the model to make forecast of future mortality rates, similar 

to the simulation study done in this report. The model’s use case can also be 

extended to modelling other major but temporary mortality shocks, for example 

from natural disasters or wars.  
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6.3 Risk management 

As we have shown in the simulation results, the pandemic has resulted in mortality 

regressing by a number of years’ worth of mortality improvement in all countries 

we consider, some more than others. For in-force life insurance contracts with 

guaranteed level premium, particularly the mortality sensitive products that are 

priced competitively such as term life insurance, the mortality impact could greatly 

hinder the profitability of the product. We use a simplified example of a term-20 

life insurance portfolio to illustrate this point. Figure 27 shows the change in 

Embedded Value (EV) for the term life portfolio in each scenario we consider in 

Section 5.2.2 compared to the EV calculated with pre-pandemic mortality. The 

assumptions for the EV calculation can be found in Appendix D.  

Figure 27: Percentage change in EV in each scenario compared to EV based on pre-COVID mortality 

 

The EV comparison shows that the financial impact can be quite significant in 

countries with substantial mortality impact from COVID. On the other hand, for in-

force products with longevity risk such as annuities or pension schemes, we could 

expect some mortality gain until the mortality experience recovers and catches up 

to long-term trend. Because the pandemic related mortality impact varies by 

country and by age group, companies should pay close attention to their product 

mix and business risk mix. For example, in all scenarios for Japan, the EV calculation 
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shows a small gain because Japan actually had small improvement in mortality for 

age 45-65 during the pandemic. For pandemic mortality sensitive life insurance 

products, companies should maintain a diversified portfolio and avoid being 

overweight in regions and age groups that are most negatively impacted. 

Given the above, we strongly encourage life insurance companies to review the EV 

impact under different scenarios of pandemic-related mortality shocks in their 

own portfolios, and to incorporate such mortality scenarios as part of their risk 

management practices. We are sharing a set of tools as electronic supplement 

material of this report with partners of Global Asia Insurance Partnership via the 

members-only section of their website at www.gaip.global. Life insurance 

practitioners can refer to these tools for mortality stress-testing of their book of 

business. Appendix E provides more details about the electronic supplementary 

material. 

Further, it is also important to incorporate the excess mortality insights and other 

learnings from the COVID-19 pandemic into scenario analyses and stress testings. 

For life insurance players who had already been incorporating pandemic or 

epidemic scenarios in their analyses, it is recommended that learnings from 

COVID-19 be taken into account to update those scenarios and stresses, and for 

those who did not have a pandemic or epidemic scenario in their analyses and 

stress testings to start incorporating such scenarios, in order to keep refining on 

their risk management and analyses practices. In a similar vein, regulators and 

supervisors are encouraged to start incorporating pandemic or endemic scenarios 

in their scenario analyses and stress testing as part of the prudential management 

requirements, or for those who already has such requirements to look into 

updating the requirements around such scenarios. 

In this study, we focus on quantifying the immediate mortality impact of the 

COVID-19 pandemic and forecasting a few possible scenarios of how the mortality 

experience might return to its normal trend. One potentially significant risk factor 

that could distort the trajectory of returning to normal is the long-term impact on 

mortality due to COVID-19 infection. For example, Xie et al. (2022) conducted a 

study using a national healthcare databases from the US Department of Veterans 

https://entuedu-my.sharepoint.com/personal/ou_dang_staff_main_ntu_edu_sg/Documents/GAIP/Pandemic_Mortality/www.gaip.global
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Affairs and concluded that the risk and 1-year burden of cardiovascular disease in 

survivors of acute COVID-19 are substantial, and the risk and burden increase for 

those who are more severely ill during the acute COVID-19 infection. How many of 

the excess cardiovascular disease incidence will eventually lead to excess deaths is 

unclear at this point, but companies and policymakers should also be aware of this 

risk factor and closely monitor the emerging mortality experience in the next few 

years.  

Looking into the future, companies and governments should remain vigilant about 

the next new pandemic even though the world has transitioned to the endemic 

phase of the COVID-19 pandemic. The lessons we learn from this study that could 

help better manage mortality risk in the next pandemic include: 

• Life insurance companies to consider maintaining a more diverse portfolio 

of products, to manage the risk of adverse impact due to another pandemic. 

• Life insurance companies to be more aware of the risks of concentration in 

specific age groups of the population in their portfolio. 

• Improving accessibility and quality of healthcare to the population will 

definitely help countries weather the next pandemic better, and hence, we 

recommend governments to seek to improve accessibility and quality. 

Aside from the pandemic, we have observed in the data analysis that substantial 

longevity risk is present in the developed economies in this region such as Japan, 

Korea and Singapore. As shown in Figure 23, an age 30 in 2022 in Japan is expected 

to live for another 60 years approximately. By 2032, an age 30 in Singapore and 

Korea will also be expected to live beyond age 90. Insurers, pension sponsors and 

policymaker should not lose sight of this glaring longevity risk in spite of the 

COVID-19 pandemic.  

6.4 Protection gap 

Our findings highlight several insurance protection gaps in East and Southeast 

Asia, some of which have been exacerbated by the COVID-19 pandemic. We discuss 

the gaps in mortality, longevity, and healthcare protection in this section.  
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6.4.1 Mortality protection gap 

We discussed that in all countries except Japan, relative to their mortality rates 

under normal circumstances, the younger age groups (age 35-50) suffered more 

than the older age groups (age 65+), even though the absolute mortality rates of 

younger age groups are still much lower than that of older age groups during the 

pandemic. This is particularly true in the less developed economies like Malaysia 

and Indonesia. Despite the much smaller number of deaths in these younger age 

groups, this is the part of the population in their prime wage-earning years. They 

are also the population group with a lot of financial responsibility in terms of 

supporting dependents. Therefore, deaths at these younger ages are much more 

likely to cause financial hardship for the family of the deceased.  

According to Swiss Re Institute (2020), the mortality protection gap, defined as “the 

difference between the protection needs of a household and the financial 

resources available to sustain a family’s future living standards in the event of the 

premature death of the main breadwinner(s)” is between 70-75% in Indonesia and 

Malaysia. If the COVID-19 mortality impact were to persist, or if another pandemic 

with similar mortality impact were to prevail, the protection gap in these middle-

aged adults will become more damaging. Governments in these countries could 

consider policies that may help close the mortality protection gap.  

6.4.2 Longevity protection gap 

As we have shown in Figure 2, in all the Asian countries we have considered in this 

study, their mortality experience have achieved great improvement in the past few 

decades.  Additionally, according to Figure 23 and Figure 24, a thirty-year old in 

2022 in Japan is expected to live to age 90 in almost all 6 future scenarios we have 

considered with the pandemic impact taken into account. Meanwhile a thirty-year 

old in 2022 in Singapore or Korea is not far behind that in Japan in terms of life 

expectancy. The long life expectancies in the developed economies in this region 

could mean significant gap in longevity protection in the next few decades. The 

situation is particularly grim considering the extremely low birth rates in these 
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countries, which means fewer labour force in the economy and less tax revenue 

that could be relied upon to support social security programs.  

6.4.3 Health protection gap 

Although in this study we have not formally studied the impact of COVID-19 on 

healthcare provision and accessibility, or any correlation between healthcare 

accessibility and mortality, we have shown some evidence on the disparity of 

healthcare accessibility and quality among the countries we consider and how 

such disparity is correlated with disparity in excess mortality. Thus, it is beneficial 

to expand protection for healthcare in this region and improve healthcare 

accessibility.  

Overall, the COVID-19 pandemic has led to implications across a few protection 

gaps. A holistic, multi-stakeholder, approach to managing protection gaps, as 

suggested in GAIP’s paper, “About the Protection Gap”, will be more efficient and 

effective. Interested readers may find the paper on GAIP’s website6. 

6.5 Morbidity impact 

In this study, we have illustrated the impact COVID-19 has on mortality. Meanwhile, 

the disease has also had large impact on morbidity. Compared to the number of 

deaths, the virus has caused many more people to be moderately or severely ill, to 

the extent that they require hospitalization and other medical treatments. 

Moreover, the strain on the healthcare system during the peak of the pandemic 

has resulted in many people avoiding or delaying care, similar to the points we raise 

in Section 3.1, which has led to sicker patients and more expensive treatment when 

they eventually get the care they require. Additionally, more and more medical 

research, for example Al-Aly et al. (2021), has shown that virus can cause damage in 

multiple systems in human bodies, and will worsen health status in the long run, 

which will take up healthcare resources.  

 
6 https://www.gaip.global/publications/about-the-protection-gap/ 

https://www.gaip.global/publications/about-the-protection-gap/
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Despite the material impact, there are very few publicly available morbidity data 

that we could use to assess the morbidity experience during the COVID-19 

pandemic. We encourage insurers to study the morbidity impact in their book of 

business as it pertains to health insurance, critical illness and disability income 

insurance. We also welcome governments and insurers to collaborate and share 

data with us to study the morbidity impact of COVID-19.  
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7 Limitations  

Despite our effort in finding reliable mortality data and suitable model to study and 

forecast the mortality impact from the COVID-19 pandemic, limitations remain in 

the findings of this study. For example, 

• This study is based on the data available in early 2023. Indonesia only has 

data available up to 2020 whereas Malaysia does not have detailed death 

data for 2022.  For Singapore, Japan, Korea and E&W, their mortality data in 

2022 are still provisional and their final 2022 mortality data will almost surely 

differ from the provisional data we use. Therefore, the mortality impact 

estimated in this study will change once all final data become available.  

• Despite the strengths of the two-parameter-model that we discussed in 

Section 4.1, the model still suffers from some shortcomings. For example, the 

model assumes that mortality shock during the pandemic is deterministic 

and will be identical in future pandemics in terms of how the mortality shock 

varies by age and how it evolves during the course of the pandemic. This 

assumption is highly simplistic since we can almost be certain that the next 

pandemic will be different. For example, the 1918 pandemic caused most 

deaths in younger population rather than the older population (Pearce et al., 

2011). However, we do not have the data and evidence to make claims about 

how the mortality impact from future pandemics will differ from COVID-19. 

In addition, the model does not capture the cohort effect in the long-term 

mortality trend. 

• The method to estimate excess mortality using the two-parameter-level 

model is useful for quantifying annual excess deaths, but to quantify excess 

deaths over smaller time intervals such as months or weeks, we suggest 

using a more sophisticated model to adjust for the significant seasonality in 

the distribution of deaths within a year. 

• This study is based on the population mortality data, rather than the insured 

lives’ mortality data. We caution against making direct inference about the 

mortality experience in the insured population from the conclusion of this 

study. It is a well-established fact that the mortality rates of the insured 
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population are lower than the general population, due to selection effect of 

the underwriting process and generally better socioeconomic status of the 

insured population (Dickson et al., 2019). Moreover, evidence also points to 

correlation between socioeconomic factors and COVID-19 related mortality 

(Hawkins et al., 2020). Early study done by Rick Leavitt (2021) shows much 

lower death rates in the group life population than the general population, 

after simple adjustment for age-sex distribution. In addition, given the 

variability in mortality experience we observe in this study, it is reasonable 

to assume that the relationship between the pandemic mortality impact of 

insured and general population also varies from country to country.  

• As discussed in Section 6.5, this study focuses on mortality impact during 

the COVID-19 pandemic. Morbidity impact also has significant implication 

for life insurers and policymakers but is outside the scope of this study.   
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8 Conclusion 

East and Southeast Asia is a vast region with highly dense population, different 

levels of economic development, and diverse culture and political system. 

Understandably the mortality experience during the COVID-19 pandemic also vary 

from country to country. In this study, we examine the mortality impact during the 

COVID-19 pandemic for five countries in this region closely. We identify that some 

countries and subgroups of the population are more severely impacted by the 

pandemic than others, but overall, the pandemic has wiped out several years of 

mortality improvement for all these countries.  

We attempt to make some forecasts on the trajectory of mortality after the 

pandemic, but how mortality will return to its normal trend in real life remains to 

be seen. The life insurance industry and policymakers should closely monitor the 

evolution of mortality experience, identify parts of the portfolio vulnerable to 

negative mortality outcome, and actively manage the mortality risk in their 

portfolio from COVID-19 as an endemic and from any new pandemic that may arise. 
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A. Mortality Data Source and Modification 

Table 5 summarizes the source and time periods of the mortality data we collect 

for each country to facilitate this study.  

Table 5: Data period and data source in the mortality database 

Country/Territory Data Period Data Source 

Singapore 1980 - 2022 Singapore Department of Statistics 

Indonesia 1970 - 2020 UN World Population Prospects (WPP) 2022  

Japan 1970 - 2022 
Human Mortality Database (HMD) 
Statistics of Japan 

Korea 1983 - 2022 Korean Statistical Information Service (KOSIS) 

Malaysia 1970 - 2021 
UN World Population Prospects (WPP) 2022 
Department of Statistics Malaysia 

England & Wales 1970 - 2022 
Human Mortality Database (HMD) 
Office for National Statistics, UK 

We prioritize data from the Human Mortality Database, followed by national 

statistical offices, while considering data from the World Population Prospects as 

a last resort. The Human Mortality Database is a reliable source of historical data 

that is widely used in mortality studies in actuarial research. The World Population 

Prospects is also a reliable source, but many adjustments and smoothing 

techniques have been applied to its data, in order to unify the data format and data 

coverage, and to follow a unified analytical protocol for all countries considered 

(United Nations, 2022a). The smoothing and adjustments tend to remove some 

short-term fluctuations in the mortality experience which are important to 

stochastic mortality modelling.  

In addition, we summarize in Table 6 modifications made to the data from these 

sources. These modifications are made to close small gaps in the data so that we 

can make full use of the latest information available. They are built upon some 

underlying assumptions. Moreover, the 2022 data in Japan, Korea and E&W are 

provisional. As the final data become available in the future, they are highly likely 

to deviate from the provisional data and the assumptions we made, which will lead 



LIVING LAB REPORT  Global Asia Insurance Partnership 

73 

 

to different estimated parameters in our model and different mortality forecast. 

However, we do not expect the deviation to be material.  

Table 6: Data modifications 

Country/Territory Modification 

Singapore 

In 1981-1989, the last age group in the original data is 75+. For 
this period, we modify the data such that deaths and 
population in age group 75-79, 80-84, 85+ are split based on 
linear interpolation of their respective mix between 1980 and 
1990. 

Indonesia None 

Japan 

For 2022, we use the Statistics of Japan data. Only the first 11 
months of deaths and population estimates are available at 
the time this report is prepared. We prorate the first 11 
months of deaths data by a factor of 12/11 to arrive at the 2022 
annual deaths. The 2022 exposure are estimated as the 
average of the first 11 months’ population estimates. We also 
calculate the deaths and exposure for 2021 from the Statistics 
of Japan data in a similar fashion. We then apply the ratio of 
2022 death rate over 2021 death rate based on the Statistics 
of Japan data to the 2021 death rate in the HMD data to arrive 
at the 2022 death rate.   
This is consistent with the two-parameter-level model 
(Equation 2) in which the mortality impact during the COVID-
19 pandemic is modelled as a multiplier to mortality rates 
following the long-term mortality trend. 

Korea 

Exposure between 1983 and 2002 in age groups above 80 are 
in aggregate in original data. They are split based on the age 
group mix in the WPP data.  
For 2022, we use the 2022 KOSIS provisional data, which show 
death data by decennial age groups. We assume that the 
ratio between the death rate of 2021 and 2022 in any 
quinquennial age group is the same as such ratio in the 
corresponding decennial age group. Based on this 
assumption, we solve the death rate for each quinquennial 
age group in 2022.  

Malaysia 

In 1970-2019, WPP data are used. In 2020-2021, the 
Department of Statistics data were used to reflect the latest 
and most verifiable mortality data after the pandemic. More 
specifically, the ratio between the death rates in 2020-2021, 
relative to 2019 in the Department of Statistics data, were 
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applied to the 2019 death rates in WPP data to arrive at the 
2020-2021 death rates used in this study.  

England and 
Wales 

In 1970-2020, HMD data are used. The 2021-2022 death data 
and 2021 exposure data are from Office of National Statistics 
(ONS). The HMD data and the ONS data are highly consistent.   
The 2022 exposure data are calculated from the 2021 
exposure by adding the population aged from the previous 
year and subtracting the population passed away during the 
year. We assume deaths occurred uniformly throughout the 
year.  

In terms of data period, the World Population Prospects include data for all 

countries listed above since as early as 1950, while mortality data for England and 

Wales in the Human Mortality Database date back to 1800s. However, we only 

included data in and after 1970 because many data in these Asian countries prior 

to 1970 appear to have poor quality. In addition, given the fast economic 

development in Asia in recent decades, we do not consider mortality experience 

prior to 1970 relevant to forecasting future mortality trend.  

We include England and Wales in this study for comparison, because it is a 

developed economy and has endured significant mortality impact from the 

COVID-19 pandemic which provides sufficient data points for comparison.  

Figure 28 shows the age mix in the WHO standard population (Ahmad et al., 2001) 

used for calculating age-standardized mortality rates in Section 2.1 and 3.3. 

Figure 28: Age mix in the WHO standard population. 
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B. Estimation and Simulation of the Two-Parameter-

Level Model 

Recall the two-parameter-level model described in Equation 2 Section 4.1, where 

the log central death rates are modelled as:  

log 𝑚𝑥,𝑡 = 𝑎𝑥 + 𝑏𝑥𝑘𝑡 + 𝑐𝑥,𝑡π𝑡𝟏𝑡∈𝒯  

Here 𝑘𝑡 follows the random walk with drift such that 

𝑘𝑡 = 𝑘𝑡−1 + 𝜇 + ϵ𝑡 ,    𝜖𝑡     ∼
𝑖.𝑖.𝑑. 𝑁(0, σ2) 

and 𝟏𝑡∈𝒯  is an indicator function with a value of 1 if 𝑡 ∈ 𝒯 and 0 otherwise.  

Furthermore, given a set of mortality data from ages 𝑥1, … , 𝑥𝑚 and year 𝑡1, … , 𝑡𝑛 , the 

following constraints are imposed to the model: 

∑ 𝑏𝑥

𝑥𝑚

𝑥=𝑥1

= 1,   𝑘𝑡1
= 0,   ∑ 𝑐𝑥,𝑡

𝑥𝑚

𝑥=𝑥1

= 1. 

In this section, we document the process of estimating parameters 𝑎𝑥, 𝑏𝑥, 𝑘𝑡 ,  𝑐𝑥,𝑡, 𝜋𝑡 , 

𝜇, and 𝜎  in model using historical data and the algorithms of the simulation study 

discussed in Section 5.2. 

B.1. Estimation of two-parameter-level model 

We use mortality data described in Section 2 and estimate the central death rate 

𝑚𝑥,𝑡 as 𝑚𝑥,𝑡 =
𝐷𝑥,𝑡

𝐸𝑥,𝑡
, for 𝑥 = 𝑥1, … , 𝑥𝑚 and 𝑡 = 𝑡1, … , 𝑡𝑛 .  

According to Zhou & Li (2022), under the assumption that 𝐷𝑥,𝑡 follows a Poisson 

distribution with a mean of 𝐸𝑥,𝑡𝑚𝑥,𝑡, the two-parameter-level model can be written 

as a generalized linear mixed model (GLMM) with a Poisson distribution for the 

response variable and a logarithm link function. Furthermore, Zhou & Li (2022) 
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pointed out that according to Breslow & Clayton (1993), the estimates of the mean 

parameters 𝜽 =  {𝑎𝑥, 𝑏𝑥, 𝑘𝑡 ,  𝑐𝑥,𝑡, 𝜋𝑡 , 𝜇} in this GLMM can be obtained by maximizing 

the quasi-likelihood function (PQL). 

In the two-parameter-level model, let 𝒌 denote the vector [𝑘𝑡2
, 𝑘𝑡3

, … , 𝑘𝑡𝑛
]′ . Then 𝒌 

follows a multivariate normal distribution with mean vector  

𝝁 = [𝜇, 2𝜇, … , (𝑛 − 1)𝜇]′  

and a variance-covariance matrix 𝑽, where the (𝑖, 𝑗)-th entry of 𝑽 is 

𝑽𝑖𝑗 = (min(𝑖, 𝑗) − 1)𝜎2.  

Then the joint probability density function of 𝒌, denoted by 𝑓(𝒌), is 

𝑓(𝒌) = (2π)−
𝑛−1

2 |𝑽|−
1
2𝑒−

1
2

(𝒌−𝝁)′𝑽−1(𝒌−𝝁) 

where |𝑽| is the determinant of the matrix 𝑽. 

The PQL function of the model is 

𝑔(𝜽) = ∑(𝐷𝑥,𝑡 log 𝑚𝑥,𝑡 – 𝐸𝑥,𝑡𝑚𝑥,𝑡)

𝑥,𝑡

−
1

2
(𝒌 − 𝝁)′𝑽−1(𝒌 − 𝝁) 

   

           = ∑(𝐷𝑥,𝑡(𝑎𝑥 + 𝑏𝑥𝑘𝑡 + 𝑐𝑥,𝑡π𝑡𝟏𝑡∈𝒯)– 𝐸𝑥,𝑡𝑒𝑎𝑥+𝑏𝑥𝑘𝑡+𝑐𝑥,𝑡π𝑡𝟏𝑡∈𝒯 )

𝑥,𝑡

−
1

2
(𝒌 − 𝝁)′𝑽−1(𝒌 − 𝝁) 

After substituting the mean parameters 𝜽 =  {𝑎𝑥, 𝑏𝑥, 𝑘𝑡 ,  𝑐𝑥,𝑡, 𝜋𝑡 , 𝜇} by their estimated 

values, the variance parameter 𝜎  can then be obtained by maximizing the 

following approximate profile quasi-likelihood function:  

ℎ(𝜽, 𝝈) = −
1

2
log|𝑽| −

1

2
log |−

𝑑2

𝑑𝒌̃2
𝑔(𝜽̃, 𝝈)| + 𝑔(𝜽̃, 𝝈) 
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The procedure for estimating the parameters is outlined in Algorithm 1. It is an 

iterative process using Newton’s method to maximize the penalized quasi-

likelihood and the approximate profile quasi-likelihood.  

Algorithm 1: Parameter Estimation in the Two-Parameter-level Model 

initialize: Initialize parameter values as  
1. Set 𝑎𝑥𝑝𝑟𝑒𝑣

= estimated 𝑎𝑥 using the Lee-Carter model;  
2. Set 𝑏𝑥𝑝𝑟𝑒𝑣

 = 𝑐𝑥,𝑡𝑝𝑟𝑒𝑣
= estimated 𝑏𝑥 using the Lee-Carter model; 

3. Set 𝑘𝑡𝑝𝑟𝑒𝑣
= π𝑡𝑝𝑟𝑒𝑣

=estimated  𝑘𝑡  using the Lee-Carter model;  
4. Set 𝜇𝑝𝑟𝑒𝑣 = estimated 𝜇 using the Lee-Carter model; 
5. Set 𝜎𝑝𝑟𝑒𝑣 = estimated 𝜎 using the Lee-Carter model; 
6. 𝛿 =  𝜂 =  1; 
7. Update 𝑔𝑝𝑟𝑒𝑣(𝜽) ← 𝑔(𝜽); 
8. Update ℎ𝑝𝑟𝑒𝑣(𝜽) ← ℎ(𝜽); 

while 𝛿 >  0.0001 do 
 while 𝜂 >  0.0001 do 
  for 𝜃  ∈  {𝑎𝑥 , 𝑏𝑥 , 𝑘𝑡 , 𝑐𝑥,𝑡 , 𝜋𝑡 , 𝜇} do  

   Update 𝜃𝑐𝑢𝑟𝑟 ← 𝜃𝑝𝑟𝑒𝑣 −
𝜕

𝜕𝜃
𝑔(𝜃𝑝𝑟𝑒𝑣)

𝜕2

𝜕𝜃2𝑔(𝜃𝑝𝑟𝑒𝑣)
 

  end 
  Update 𝜂 = 𝑔(𝜽𝒄𝒖𝒓𝒓) − 𝑔𝑝𝑟𝑒𝑣(𝜽) 

Update 𝜽𝑝𝑟𝑒𝑣 ← 𝜽𝑐𝑢𝑟𝑟 
Update 𝑔𝑝𝑟𝑒𝑣(𝜽) ← 𝑔(𝜽𝒄𝒖𝒓𝒓) 

 end 

Update 𝜎𝑐𝑢𝑟𝑟 ← 𝜎𝑝𝑟𝑒𝑣 −
𝜕

𝜕𝜎
 ℎ(𝜎𝑝𝑟𝑒𝑣)

𝜕2

𝜕𝜎2ℎ(𝜎𝑝𝑟𝑒𝑣)
 

Update 𝛿 = ℎ(𝜎𝑐𝑢𝑟𝑟) − ℎ𝑝𝑟𝑒𝑣(𝜎) 
Update 𝜎𝑝𝑟𝑒𝑣 ← 𝜎𝑐𝑢𝑟𝑟 

Update ℎ𝑝𝑟𝑒𝑣(𝜎) ← ℎ(𝜎𝑐𝑢𝑟𝑟) 

end 

In the two-parameter-level model, the penalized quasi-likelihood estimation 

methodology is superior to the traditional two-stage estimation method for 

estimating parameters in the Lee-Carter model. The penalized quasi-likelihood 

estimation methodology can isolate the impact from the pandemic shock of 

𝑐𝑥,𝑡π𝑡𝟏𝑡∈𝒯 from the long-term mortality trend captured by 𝑘𝑡 . The heuristic behind 

the phenomenon is that the PQL method penalize any deviation from the 

multivariate normal distribution that we assume 𝑘𝑡 ’s are conformed to. Interested 

readers may refer to Zhou & Li (2022) for more detailed discussion on the 
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methodology of penalized quasi-likelihood estimation, its better estimation result 

compared to the two-stage estimation method in Lee-Carter model and why that 

is the case.   

B.2. Simulation using a multi-parameter-level model 

Given the estimated parameter values, we simulate mortality rates and various 

mortality indices for each country according to Algorithm 2. 

Algorithm 2: Simulating mortality rates and mortality indices from the two-parameter-level model 

input: Estimated values of 𝑎𝑥, 𝑏𝑥, 𝑘𝑡𝑛
,  𝑐𝑥,𝑡𝑛

, 𝜋𝑡𝑛
, 𝜇,  and 𝜎 ; 

 𝑁: number of simulation samples; 

 𝑇: number of years to forecast in simulation; 

initialize: Set 𝝁 = [𝜇, 2𝜇  … , 𝑇𝜇] ; 

Set the (𝑖, 𝑗)-th entry of the 𝑇 × 𝑇 variance-covariance matrix 𝑉 to be 𝑽𝑖𝑗 =

(min(𝑖, 𝑗) − 1)𝜎2; 

for 𝑖 =  1 to 𝑁 do 

 Randomly sample 𝒛𝒊 from 𝑀𝑉𝑁(𝝁, 𝑉) 

 Set 𝒌𝒊 = [𝑘𝑡𝑛+1, 𝑘𝑡𝑛+2, … , 𝑘𝑡𝑛+𝑇]′ = 𝑘𝑡𝑛
+ 𝒛𝒊; 

 Compute log 𝑚𝑥,𝑡 for 𝑡 = 𝑡𝑛 + 1, … , 𝑡𝑛 + 𝑇; 

 Compute 𝑞𝑥,𝑡 for 𝑡 = 𝑡𝑛 + 1, … , 𝑡𝑛 + 𝑇; 

Compute mortality indices for 𝑡 = 𝑡𝑛 + 1, … , 𝑡𝑛 + 𝑇; 

end 

The computation for log 𝑚𝑥,𝑡 was done according to Equation 4 and each scenario 

described in Section 5.2.2.  

The computation for 𝑞𝑥,𝑡 involves several steps: 

Step 1: Extrapolate 𝑚𝑥,𝑡 from the maximum age in the mortality data to the 

limiting age of 120 using the Kannisto method (Thatcher et al., 1998). 

This is consistent with the method used in the Human Mortality 

Database (Wilmoth et al., 2007). 
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Step 2: Linearly interpolate 𝑚𝑥,𝑡 between each age group into single age. 

Step 3: Apply Whittaker gradation (Whittaker, 1922) to smooth 𝑚𝑥,𝑡  in each 

age.  

Step 4: Calculate 𝑞𝑥 from 𝑚𝑥 as  

𝑞𝑥 = {

𝑚𝑥

1 + (1 − 𝑎𝑥)𝑚𝑥

1 ,        𝑓𝑜𝑟 𝑥 =  120
,     𝑓𝑜𝑟 𝑥 =  0, 1, ⋯ , 119 

  where 𝑎𝑥 =
1

2
 for all 𝑥.  

The Step 4 calculation of 𝑞𝑥,𝑡  is according to the basic lifetable calculation in 

Wilmoth et al. (2007). Normally a unique 𝑎𝑥 will be used when 𝑥 =  0 to account for 

the empirical distribution of deaths in the first year of life. However, since we focus 

on mortality rates and indices for age 30 and above in this study, we will use 𝑎0 =
1

2
 

for simplicity.  

The mortality indices we are interested in are calculated as follows: 

𝑒𝑥,𝑡
𝑃 = ∑ 𝑠𝑝𝑥

ω−𝑥

𝑠=1

  

𝑒𝑥,𝑡
𝐶 = ∑ ∏ 𝑝𝑥+𝑢,𝑡+𝑢

𝑠−1

𝑢=0

ω−𝑥

𝑠=1
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C. Methodology for Calculating Excess Deaths 

We describe the methodologies used for calculating excess deaths during the 

COVID-19 pandemic in the several studies mentioned in Section 4.3. In particular, 

we focus on how the expected deaths and actual deaths are treated in each study.  

C.1. WHO: Global excess deaths associated with COVID-19  

Reference: Msemburi et al. (2023) 

Results from the WHO study are published in Msemburi et al., (2023) while a 

detailed documentation of methodology can be found in WHO, (2022). The 

estimated excess deaths data in this study can be found in 

https://www.who.int/data/sets/global-excess-deaths-associated-with-covid-19-

modelled-estimates. 

In this study, the expected deaths are estimated using a generalized linear model 

(GLM) with negative binomial link function. The mean of the distribution is 

modelled as a yearly trend component plus a so called within-year component 

which accounts for seasonal variation. Both the yearly trend and within-year trend 

are modelled through spline functions. In cases where monthly mortality data are 

unavailable, temperatures are used as a proxy for monthly mortality variation.  

In countries where no mortality data are available, a Bayesian approach is used to 

estimate actual death counts. An over-dispersed Poisson log-linear regression 

model is used, with the link function taking into account covariates such as COVID-

19 death rate, test positivity rate, and containment measures. Variation due to 

gender and age pattern are also taken into consideration in the estimation.  

C.2. The Economist: The pandemic’s true death toll  

Reference: The Economist (2021) 

https://www.who.int/data/sets/global-excess-deaths-associated-with-covid-19-modelled-estimates
https://www.who.int/data/sets/global-excess-deaths-associated-with-covid-19-modelled-estimates
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The methodology used to model the excess mortality in the excess mortality 

tracker published by the Economist is documented in (Solstad, 2021). The 

estimated excess deaths data can be accessed via 

https://github.com/TheEconomist/covid-19-excess-deaths-tracker while the code 

and input data can be accessed via https://github.com/TheEconomist/covid-19-

the-economist-global-excess-deaths-model. 

According to the document, the excess mortality is predicted by a modelled 

trained via a gradient boosted tree model using a large number of variables. The 

excess deaths data for training the model are collected from external sources.  

C.3. The Lancet: Estimating excess mortality due to the COVID-19 

pandemic  

Reference: Wang et al. (2022) 

In this study, the expected deaths are estimated via an ensemble of 6 models. The 

first 4 models are variation of a two-level model. Both parts of the two-level model 

are Poisson regression model, where the mean is based on a linear spline function. 

The first level captures the seasonality in death counts and is estimated first. Then 

based on the first level estimates, the second level reflects the secular time trend 

in death counts. The variations between the 4 models are in where the knots are 

placed in the spline function. The fifth model in the ensemble is a Poisson 

regression model, but the seasonality and secular time trend are modelled 

simultaneously. The sixth model simply assumes that the expected deaths for 2020 

and 2021 are the same as in the same week of 2019. For countries where actual 

deaths are unavailable, the excess deaths are predicted using a linear model where 

the covariates are determined via the Least Absolute Shrinkage and Selection 

Operator (LASSO) regression performed on countries where actual deaths are 

available.   

https://github.com/TheEconomist/covid-19-excess-deaths-tracker
https://github.com/TheEconomist/covid-19-the-economist-global-excess-deaths-model
https://github.com/TheEconomist/covid-19-the-economist-global-excess-deaths-model
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D. Assumptions in EV Example 

Product description 

 Description 
Product Term-20 life insurance 
Issue age 45 
Issue date 1/1/2018 
Sum insured 1,000,000 

Premium 
Singapore: 3,000; Indonesia: 11,000 
Japan: 3,600; Korea: 3,250 
Malaysia: 7,450; England and Wales: 3,850 

Sales commission 75% of first year premium 

Assumption 

 
Pricing  
Assumption 

Valuation 
Assumption 

Solvency 
Assumption 

Interest rate 4.5% 3.5% 3.0% 
Inflation 3.0% 2.0% 2.0% 
Acquisition 
expense 

500 500 500 

Maintenance 
expense 

200 220 240 

Lapse rate 
2.5% in policy year 
1-5; 5.0% thereafter 

2.0 % in policy year 
1-5; 4.0% thereafter 

1.25% in policy year 
1-5; 2.5% thereafter 

Mortality rate 

Simulated 
mortality rates in 
Scenario 1-6 in 
Section 5.2.2 

Simulated 
mortality rates in 
Scenario 1-6 in 
Section 5.2.2 with 
10% MfAD 

Simulated 
mortality rates in 
Scenario 1-6 in 
Section 5.2.2 with 
20% MfAD 

• EV valuation date: December 31, 2022 

• For simplicity, we assume no basis change in any scenario.  

• Premiums are calculated based on pricing assumptions and an IRR of 

approximately 10% for all countries.  
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E. Electronic Supplementary Material 

We are sharing a set of tools as electronic supplementary material to support the 

utilization of models and findings in this study by practitioners. The tools we share 

are: 

a) R code for estimating parameters of the two-parameter-level model from 

mortality data, and for simulating mortality rates under the 6 scenarios we 

consider in Section 5.2.2 

b) 10,000 paths of simulated central death rates for 60 years in quinquennial 

age groups under each of the 6 scenarios  

c) The ratios between each simulated central death rate in b) and the 2022 

mortality rates in each respective age group 

Table 7 is an excerpt from the ratios we provide for item c). In this table, we provide 

the ratio of the simulated central death rates and the 2022 central death rate in 

Singapore for age group 65-70, in 1 out of the 10,000 Monte Carlo (MC) simulation 

sample paths under each scenario.  

We suggest users to apply the R code to fit a two-parameter-level model using 

their own mortality data and simulate mortality rates, subject to the limitations we 

discussed in Section 7 when using the two-parameter-level model and the 

proposed simulation scenarios.  

Users may also apply the ratios we provided in c) to their own mortality rates in 

2022 to arrive at new sample paths of mortality rate projection. However, this 

approach should only be used as a last resort if users are interested in testing the 

relative mortality impact in their own book of business under different scenarios, 

but do not have the capacity to utilize the R code. This is not our recommended 

approach to quantify mortality impact of COVID-19 because the simulated rates 

are based on population data in each country we study, which reflect the long-

term mortality trend of the specific data period, and the mortality impact during 

the COVID-19 pandemic from 2020-2022. Unless the mortality experience of the 
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population of interest happens to be identical to the one we have studied, there 

will be inconsistency between the mortality rates simulated by the actual 

stochastic mortality model in R and the mortality rates generated by applying the 

ratios in c).  

Table 7: Excerpt of ratios between simulated central rates and the 2022 mortality rates in Singapore 
for age group 65-70 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 

Year 
MC 
sample 1 

MC 
sample 1 

MC 
sample 1 

MC 
sample 1 

MC 
sample 1 

MC 
sample 1 

2023 0.81056 0.97385 0.94741 0.94741 0.94741 0.94383 
2024 0.83842 1.00732 0.95730 0.95730 0.95730 0.93843 
2025 0.82847 0.99536 0.92731 0.92731 0.92731 0.90401 
2026 0.81053 0.97381 0.89202 0.89202 0.89202 0.85124 
2027 0.80764 0.97034 0.87616 0.88884 0.87616 0.82831 
2028 0.79993 0.96107 0.85726 0.88035 0.85726 0.80570 
2029 0.79549 0.95574 0.84370 0.87547 0.84370 0.78338 
2030 0.78510 0.94325 0.82536 0.86403 0.82536 0.76673 
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